Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,59 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
from torchvision.transforms import functional as F
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
os.system("pip install -r yolov5/requirements.txt")
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
device = torch.device(
|
17 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
18 |
model.eval()
|
19 |
|
|
|
|
|
20 |
def preprocess_image(image):
|
21 |
-
|
22 |
-
image_tensor
|
23 |
-
return image_tensor
|
24 |
|
25 |
def draw_boxes(image, outputs, threshold=0.3):
|
26 |
-
image = np.array(image)
|
|
|
|
|
27 |
for box in outputs:
|
28 |
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
|
29 |
if score > threshold:
|
30 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
31 |
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
32 |
-
text = f"{model.names[label]}: {score:.2f}"
|
33 |
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
34 |
-
|
|
|
35 |
|
36 |
def detect_objects(image):
|
37 |
image_tensor = preprocess_image(image)
|
38 |
outputs = model(image_tensor)
|
39 |
outputs = non_max_suppression(outputs)[0]
|
40 |
-
|
|
|
41 |
|
42 |
-
iface = gr.Interface(
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
iface.launch()
|
|
|
1 |
+
!pip install -U torch torchvision cython
|
2 |
+
!pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
|
3 |
+
!pip install gradio
|
4 |
+
|
5 |
import torch
|
6 |
+
import torchvision
|
7 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
|
|
|
|
8 |
from torchvision.transforms import functional as F
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
from google.colab.patches import cv2_imshow
|
12 |
+
import gradio as gr
|
13 |
|
14 |
+
!git clone https://github.com/ultralytics/yolov5
|
15 |
+
%cd yolov5
|
16 |
+
!pip install -r requirements.txt
|
|
|
17 |
|
18 |
+
import torch
|
19 |
+
from yolov5.models.yolo import Model
|
20 |
|
21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
22 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
23 |
model.eval()
|
24 |
|
25 |
+
from yolov5.utils.general import non_max_suppression
|
26 |
+
|
27 |
def preprocess_image(image):
|
28 |
+
image_tensor = F.to_tensor(image)
|
29 |
+
return image_tensor.unsqueeze(0).to(device)
|
|
|
30 |
|
31 |
def draw_boxes(image, outputs, threshold=0.3):
|
32 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
33 |
+
h, w, _ = image.shape
|
34 |
+
|
35 |
for box in outputs:
|
36 |
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
|
37 |
if score > threshold:
|
38 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
39 |
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
40 |
+
text = f"{model.names[label]:s}: {score:.2f}"
|
41 |
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
42 |
+
|
43 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
44 |
|
45 |
def detect_objects(image):
|
46 |
image_tensor = preprocess_image(image)
|
47 |
outputs = model(image_tensor)
|
48 |
outputs = non_max_suppression(outputs)[0]
|
49 |
+
result_image = draw_boxes(image, outputs)
|
50 |
+
return result_image
|
51 |
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=detect_objects,
|
54 |
+
inputs=gr.inputs.Image(type="pil"),
|
55 |
+
outputs=gr.outputs.Image(type="pil"),
|
56 |
+
live=True
|
57 |
+
)
|
58 |
|
59 |
+
iface.launch()
|
|