Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,16 @@
|
|
1 |
-
import
|
2 |
import torch
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
from torchvision.transforms import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from yolov5.utils.general import non_max_suppression
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -17,7 +24,6 @@ def preprocess_image(image):
|
|
17 |
|
18 |
def draw_boxes(image, outputs, threshold=0.3):
|
19 |
image = np.array(image)
|
20 |
-
h, w, _ = image.shape
|
21 |
for box in outputs:
|
22 |
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
|
23 |
if score > threshold:
|
@@ -33,13 +39,8 @@ def detect_objects(image):
|
|
33 |
outputs = non_max_suppression(outputs)[0]
|
34 |
return draw_boxes(image, outputs)
|
35 |
|
36 |
-
iface = gr.Interface(
|
37 |
-
|
38 |
-
inputs=gr.Image(type="pil"),
|
39 |
-
outputs=gr.Image(type="pil"),
|
40 |
-
title="YOLO Object Detector",
|
41 |
-
description="Upload an image to detect objects using YOLOv5."
|
42 |
-
)
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
from torchvision.transforms import functional as F
|
8 |
+
|
9 |
+
# Clone yolov5 if not present
|
10 |
+
if not os.path.exists("yolov5"):
|
11 |
+
os.system("git clone https://github.com/ultralytics/yolov5.git")
|
12 |
+
os.system("pip install -r yolov5/requirements.txt")
|
13 |
+
|
14 |
from yolov5.utils.general import non_max_suppression
|
15 |
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
24 |
|
25 |
def draw_boxes(image, outputs, threshold=0.3):
|
26 |
image = np.array(image)
|
|
|
27 |
for box in outputs:
|
28 |
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
|
29 |
if score > threshold:
|
|
|
39 |
outputs = non_max_suppression(outputs)[0]
|
40 |
return draw_boxes(image, outputs)
|
41 |
|
42 |
+
iface = gr.Interface(fn=detect_objects, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"),
|
43 |
+
title="YOLO Object Detector", description="Upload an image to detect objects using YOLOv5.")
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
iface.launch()
|