WeaveWave / app.py
Audiofool
update app.py
5f28c4a
import argparse
import logging
import os
import sys
import time
import typing as tp
import warnings
import base64
from pathlib import Path
from tempfile import NamedTemporaryFile
import gradio as gr
import requests
from theme_wave import theme, css
# --- Configuration (Main App) ---
MLLM_API_URL = "http://localhost:8000"
MUSICGEN_API_URL = "https://your-musicgen-api-endpoint.com" # Replace with actual MusicGen API endpoint
# --- Global Variables (Main App) ---
INTERRUPTING = False
# --- Utility Functions (Main App) ---
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
try:
path.unlink()
except Exception as e:
print(f"Error deleting file {path}: {e}")
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return gr.make_waveform(*args, **kwargs)
# --- API Client Functions ---
def get_mllm_description(media_path: str, user_prompt: str) -> str:
"""Gets the music description from the MLLM API."""
try:
if media_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv")):
# Video
with open(media_path, "rb") as f:
video_data = f.read()
encoded_video = base64.b64encode(video_data).decode("utf-8")
response = requests.post(
f"{MLLM_API_URL}/describe_video/",
json={"video": encoded_video, "user_prompt": user_prompt},
)
elif media_path.lower().endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
# Image
with open(media_path, "rb") as f:
image_data = f.read()
encoded_image = base64.b64encode(image_data).decode("utf-8")
response = requests.post(
f"{MLLM_API_URL}/describe_image/",
json={"image": encoded_image, "user_prompt": user_prompt},
)
else: # Text-only
response = requests.post(
f"{MLLM_API_URL}/describe_text/", json={"user_prompt": user_prompt}
)
response.raise_for_status()
return response.json()["description"]
except requests.exceptions.RequestException as e:
raise gr.Error(f"Error communicating with MLLM API: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
def generate_music_from_api(
description: str,
melody=None,
duration: int = 10,
model_version: str = "facebook/musicgen-stereo-melody-large",
topk: int = 250,
topp: float = 0,
temperature: float = 1.0,
cfg_coef: float = 3.0,
use_diffusion: bool = False,
):
"""Generates music using the MusicGen API."""
# Prepare the API request payload
payload = {
"description": description,
"duration": duration,
"model_version": model_version,
"topk": topk,
"topp": topp,
"temperature": temperature,
"cfg_coef": cfg_coef,
"use_diffusion": use_diffusion
}
# Handle melody if provided
if melody is not None:
sr, melody_data = melody
# Convert melody to base64 for API transmission
melody_bytes = melody_data.tobytes() if hasattr(melody_data, 'tobytes') else melody_data.tostring()
encoded_melody = base64.b64encode(melody_bytes).decode("utf-8")
payload["melody"] = encoded_melody
payload["melody_sample_rate"] = sr
try:
response = requests.post(f"{MUSICGEN_API_URL}/generate", json=payload)
response.raise_for_status()
result = response.json()
# Assuming API returns base64 encoded audio files
audio_data = base64.b64decode(result["audio"])
diffusion_audio_data = base64.b64decode(result.get("diffusion_audio", "")) if use_diffusion else None
# Save to temporary files
output_paths = []
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
file.write(audio_data)
output_paths.append(file.name)
file_cleaner.add(file.name)
if diffusion_audio_data:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
file.write(diffusion_audio_data)
output_paths.append(file.name)
file_cleaner.add(file.name)
return output_paths[0], output_paths[1] if len(output_paths) > 1 else None
except requests.exceptions.RequestException as e:
raise gr.Error(f"Error communicating with MusicGen API: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
# --- Music Generation ---
def predict_full(
model_version,
media_type,
image_input,
video_input,
text_prompt,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
progress=gr.Progress(),
):
global INTERRUPTING
INTERRUPTING = False
use_diffusion = decoder == "MultiBand_Diffusion"
if media_type == "Image":
media = image_input if image_input else None
elif media_type == "Video":
media = video_input if video_input else None
else:
media = None
# 1. Get Music Description (using the MLLM API)
progress(progress=None, desc="Generating music description...")
if media:
try:
music_description = get_mllm_description(media, text_prompt)
except Exception as e:
raise gr.Error(str(e))
else:
music_description = text_prompt
# 2. Generate music using MusicGen API
progress(progress=None, desc="Generating music via API...")
try:
output_audio_path, output_audio_mbd_path = generate_music_from_api(
description=music_description,
melody=melody,
duration=duration,
model_version=model_version,
topk=topk,
topp=topp,
temperature=temperature,
cfg_coef=cfg_coef,
use_diffusion=use_diffusion
)
except Exception as e:
raise gr.Error(f"Error generating music: {e}")
if INTERRUPTING:
raise gr.Error("Generation interrupted.")
return output_audio_path, output_audio_mbd_path
Wave = theme()
def create_ui(launch_kwargs=None):
"""Creates and launches the Gradio UI."""
if launch_kwargs is None:
launch_kwargs = {}
def interrupt_handler():
interrupt()
with gr.Blocks(theme=Wave, css=css) as interface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>WeaveWave</h1>
<h2>Towards Multimodal Music Generation</h2>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(
value="./assets/WeaveWave.png",
label="Input Image",
type="filepath",
height=320,
visible=True,
)
video_input = gr.Video(
value="./assets/example_video_1.mp4",
label="Input Video",
height=320,
visible=False,
)
with gr.Row():
media_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="",
interactive=True,
elem_classes="center-radio compact-radio",
)
def toggle_media(choice):
return {
image_input: gr.update(visible=(choice == "Image")),
video_input: gr.update(visible=(choice == "Video")),
}
media_type.change(
toggle_media, inputs=media_type, outputs=[image_input, video_input]
)
with gr.Column():
text_input = gr.Text(
value="Anything you like",
label="User Prompt",
)
melody_input = gr.Audio(
value="./assets/bach.mp3",
type="numpy",
label="Melody",
)
with gr.Row():
submit_button = gr.Button("Generate Music", variant="primary")
interrupt_button = gr.Button("Interrupt", variant="stop")
with gr.Row():
model_version = gr.Dropdown(
[
"facebook/musicgen-melody",
"facebook/musicgen-medium",
"facebook/musicgen-small",
"facebook/musicgen-large",
"facebook/musicgen-melody-large",
"facebook/musicgen-stereo-small",
"facebook/musicgen-stereo-medium",
"facebook/musicgen-stereo-melody",
"facebook/musicgen-stereo-large",
"facebook/musicgen-stereo-melody-large",
],
label="MusicGen Model",
value="facebook/musicgen-stereo-melody-large",
)
duration = gr.Slider(
minimum=1, maximum=120, value=10, label="Duration (seconds)"
)
with gr.Row():
topk = gr.Number(label="Top-k", value=250)
topp = gr.Number(label="Top-p", value=0)
temperature = gr.Number(label="Temperature", value=1.0)
cfg_coef = gr.Number(label="Classifier-Free Guidance", value=3.0)
decoder = gr.Dropdown(
["Default", "MultiBand_Diffusion"],
label="Decoder",
value="Default",
interactive=True,
)
with gr.Row():
output_audio = gr.Audio(label="Generated Music", type="filepath")
output_audio_mbd = gr.Audio(
label="MultiBand Diffusion Decoder", type="filepath"
)
submit_button.click(
predict_full,
inputs=[
model_version,
media_type,
image_input,
video_input,
text_input,
melody_input,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
],
outputs=[output_audio, output_audio_mbd],
)
interrupt_button.click(interrupt_handler, [], [])
gr.Examples(
examples=[
[
"Image",
"./assets/example_image_1.jpg",
None,
"Acoustic guitar solo. Country and folk music.",
None,
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
[
"Video",
None,
"./assets/example_video_1.mp4",
"Space Rock, Synthwave, 80s. Electric guitar and Drums.",
None,
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
[
None,
None,
None,
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
],
inputs=[
media_type,
image_input,
video_input,
text_input,
melody_input,
model_version,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
],
)
interface.queue().launch(**launch_kwargs)
return interface
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--listen",
type=str,
default="0.0.0.0" if "SPACE_ID" in os.environ else "127.0.0.1",
help="IP to listen on",
)
parser.add_argument(
"--username", type=str, default="", help="Username for authentication"
)
parser.add_argument(
"--password", type=str, default="", help="Password for authentication"
)
parser.add_argument(
"--server_port", type=int, default=0, help="Port to run the server on"
)
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
parser.add_argument("--share", action="store_true", help="Share the Gradio UI")
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs["server_name"] = args.listen
if args.username and args.password:
launch_kwargs["auth"] = (args.username, args.password)
if args.server_port:
launch_kwargs["server_port"] = args.server_port
if args.inbrowser:
launch_kwargs["inbrowser"] = args.inbrowser
if args.share:
launch_kwargs["share"] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
create_ui(launch_kwargs)