File size: 14,564 Bytes
3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a 3c425d6 5f28c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import argparse
import logging
import os
import sys
import time
import typing as tp
import warnings
import base64
from pathlib import Path
from tempfile import NamedTemporaryFile
import gradio as gr
import requests
from theme_wave import theme, css
# --- Configuration (Main App) ---
MLLM_API_URL = "http://localhost:8000"
MUSICGEN_API_URL = "https://your-musicgen-api-endpoint.com" # Replace with actual MusicGen API endpoint
# --- Global Variables (Main App) ---
INTERRUPTING = False
# --- Utility Functions (Main App) ---
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
try:
path.unlink()
except Exception as e:
print(f"Error deleting file {path}: {e}")
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return gr.make_waveform(*args, **kwargs)
# --- API Client Functions ---
def get_mllm_description(media_path: str, user_prompt: str) -> str:
"""Gets the music description from the MLLM API."""
try:
if media_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv")):
# Video
with open(media_path, "rb") as f:
video_data = f.read()
encoded_video = base64.b64encode(video_data).decode("utf-8")
response = requests.post(
f"{MLLM_API_URL}/describe_video/",
json={"video": encoded_video, "user_prompt": user_prompt},
)
elif media_path.lower().endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
# Image
with open(media_path, "rb") as f:
image_data = f.read()
encoded_image = base64.b64encode(image_data).decode("utf-8")
response = requests.post(
f"{MLLM_API_URL}/describe_image/",
json={"image": encoded_image, "user_prompt": user_prompt},
)
else: # Text-only
response = requests.post(
f"{MLLM_API_URL}/describe_text/", json={"user_prompt": user_prompt}
)
response.raise_for_status()
return response.json()["description"]
except requests.exceptions.RequestException as e:
raise gr.Error(f"Error communicating with MLLM API: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
def generate_music_from_api(
description: str,
melody=None,
duration: int = 10,
model_version: str = "facebook/musicgen-stereo-melody-large",
topk: int = 250,
topp: float = 0,
temperature: float = 1.0,
cfg_coef: float = 3.0,
use_diffusion: bool = False,
):
"""Generates music using the MusicGen API."""
# Prepare the API request payload
payload = {
"description": description,
"duration": duration,
"model_version": model_version,
"topk": topk,
"topp": topp,
"temperature": temperature,
"cfg_coef": cfg_coef,
"use_diffusion": use_diffusion
}
# Handle melody if provided
if melody is not None:
sr, melody_data = melody
# Convert melody to base64 for API transmission
melody_bytes = melody_data.tobytes() if hasattr(melody_data, 'tobytes') else melody_data.tostring()
encoded_melody = base64.b64encode(melody_bytes).decode("utf-8")
payload["melody"] = encoded_melody
payload["melody_sample_rate"] = sr
try:
response = requests.post(f"{MUSICGEN_API_URL}/generate", json=payload)
response.raise_for_status()
result = response.json()
# Assuming API returns base64 encoded audio files
audio_data = base64.b64decode(result["audio"])
diffusion_audio_data = base64.b64decode(result.get("diffusion_audio", "")) if use_diffusion else None
# Save to temporary files
output_paths = []
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
file.write(audio_data)
output_paths.append(file.name)
file_cleaner.add(file.name)
if diffusion_audio_data:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
file.write(diffusion_audio_data)
output_paths.append(file.name)
file_cleaner.add(file.name)
return output_paths[0], output_paths[1] if len(output_paths) > 1 else None
except requests.exceptions.RequestException as e:
raise gr.Error(f"Error communicating with MusicGen API: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
# --- Music Generation ---
def predict_full(
model_version,
media_type,
image_input,
video_input,
text_prompt,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
progress=gr.Progress(),
):
global INTERRUPTING
INTERRUPTING = False
use_diffusion = decoder == "MultiBand_Diffusion"
if media_type == "Image":
media = image_input if image_input else None
elif media_type == "Video":
media = video_input if video_input else None
else:
media = None
# 1. Get Music Description (using the MLLM API)
progress(progress=None, desc="Generating music description...")
if media:
try:
music_description = get_mllm_description(media, text_prompt)
except Exception as e:
raise gr.Error(str(e))
else:
music_description = text_prompt
# 2. Generate music using MusicGen API
progress(progress=None, desc="Generating music via API...")
try:
output_audio_path, output_audio_mbd_path = generate_music_from_api(
description=music_description,
melody=melody,
duration=duration,
model_version=model_version,
topk=topk,
topp=topp,
temperature=temperature,
cfg_coef=cfg_coef,
use_diffusion=use_diffusion
)
except Exception as e:
raise gr.Error(f"Error generating music: {e}")
if INTERRUPTING:
raise gr.Error("Generation interrupted.")
return output_audio_path, output_audio_mbd_path
Wave = theme()
def create_ui(launch_kwargs=None):
"""Creates and launches the Gradio UI."""
if launch_kwargs is None:
launch_kwargs = {}
def interrupt_handler():
interrupt()
with gr.Blocks(theme=Wave, css=css) as interface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>WeaveWave</h1>
<h2>Towards Multimodal Music Generation</h2>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(
value="./assets/WeaveWave.png",
label="Input Image",
type="filepath",
height=320,
visible=True,
)
video_input = gr.Video(
value="./assets/example_video_1.mp4",
label="Input Video",
height=320,
visible=False,
)
with gr.Row():
media_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="",
interactive=True,
elem_classes="center-radio compact-radio",
)
def toggle_media(choice):
return {
image_input: gr.update(visible=(choice == "Image")),
video_input: gr.update(visible=(choice == "Video")),
}
media_type.change(
toggle_media, inputs=media_type, outputs=[image_input, video_input]
)
with gr.Column():
text_input = gr.Text(
value="Anything you like",
label="User Prompt",
)
melody_input = gr.Audio(
value="./assets/bach.mp3",
type="numpy",
label="Melody",
)
with gr.Row():
submit_button = gr.Button("Generate Music", variant="primary")
interrupt_button = gr.Button("Interrupt", variant="stop")
with gr.Row():
model_version = gr.Dropdown(
[
"facebook/musicgen-melody",
"facebook/musicgen-medium",
"facebook/musicgen-small",
"facebook/musicgen-large",
"facebook/musicgen-melody-large",
"facebook/musicgen-stereo-small",
"facebook/musicgen-stereo-medium",
"facebook/musicgen-stereo-melody",
"facebook/musicgen-stereo-large",
"facebook/musicgen-stereo-melody-large",
],
label="MusicGen Model",
value="facebook/musicgen-stereo-melody-large",
)
duration = gr.Slider(
minimum=1, maximum=120, value=10, label="Duration (seconds)"
)
with gr.Row():
topk = gr.Number(label="Top-k", value=250)
topp = gr.Number(label="Top-p", value=0)
temperature = gr.Number(label="Temperature", value=1.0)
cfg_coef = gr.Number(label="Classifier-Free Guidance", value=3.0)
decoder = gr.Dropdown(
["Default", "MultiBand_Diffusion"],
label="Decoder",
value="Default",
interactive=True,
)
with gr.Row():
output_audio = gr.Audio(label="Generated Music", type="filepath")
output_audio_mbd = gr.Audio(
label="MultiBand Diffusion Decoder", type="filepath"
)
submit_button.click(
predict_full,
inputs=[
model_version,
media_type,
image_input,
video_input,
text_input,
melody_input,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
],
outputs=[output_audio, output_audio_mbd],
)
interrupt_button.click(interrupt_handler, [], [])
gr.Examples(
examples=[
[
"Image",
"./assets/example_image_1.jpg",
None,
"Acoustic guitar solo. Country and folk music.",
None,
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
[
"Video",
None,
"./assets/example_video_1.mp4",
"Space Rock, Synthwave, 80s. Electric guitar and Drums.",
None,
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
[
None,
None,
None,
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"facebook/musicgen-stereo-melody-large",
10,
250,
0,
1.0,
3.0,
"MultiBand_Diffusion",
],
],
inputs=[
media_type,
image_input,
video_input,
text_input,
melody_input,
model_version,
duration,
topk,
topp,
temperature,
cfg_coef,
decoder,
],
)
interface.queue().launch(**launch_kwargs)
return interface
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--listen",
type=str,
default="0.0.0.0" if "SPACE_ID" in os.environ else "127.0.0.1",
help="IP to listen on",
)
parser.add_argument(
"--username", type=str, default="", help="Username for authentication"
)
parser.add_argument(
"--password", type=str, default="", help="Password for authentication"
)
parser.add_argument(
"--server_port", type=int, default=0, help="Port to run the server on"
)
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
parser.add_argument("--share", action="store_true", help="Share the Gradio UI")
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs["server_name"] = args.listen
if args.username and args.password:
launch_kwargs["auth"] = (args.username, args.password)
if args.server_port:
launch_kwargs["server_port"] = args.server_port
if args.inbrowser:
launch_kwargs["inbrowser"] = args.inbrowser
if args.share:
launch_kwargs["share"] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
create_ui(launch_kwargs) |