Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ import torchvision.transforms as T
|
|
8 |
from PIL import Image
|
9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
import cv2
|
|
|
11 |
|
12 |
colors = [
|
13 |
(0, 255, 0),
|
@@ -39,7 +40,7 @@ def is_overlapping(rect1, rect2):
|
|
39 |
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
40 |
|
41 |
|
42 |
-
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
43 |
"""_summary_
|
44 |
Args:
|
45 |
image (_type_): image or image path
|
@@ -69,10 +70,14 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
69 |
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
70 |
else:
|
71 |
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
72 |
-
|
73 |
if len(entities) == 0:
|
74 |
return image
|
75 |
|
|
|
|
|
|
|
|
|
76 |
# Not to show too many bboxes
|
77 |
entities = entities[:len(color_map)]
|
78 |
|
@@ -92,11 +97,13 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
92 |
used_colors = colors # random.sample(colors, k=num_bboxes)
|
93 |
|
94 |
color_id = -1
|
95 |
-
for entity_name, (start, end), bboxes in entities:
|
96 |
color_id += 1
|
|
|
|
|
97 |
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
98 |
-
if start is None and bbox_id > 0:
|
99 |
-
|
100 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
101 |
|
102 |
# draw bbox
|
@@ -199,13 +206,17 @@ def main():
|
|
199 |
|
200 |
color_id = -1
|
201 |
entity_info = []
|
202 |
-
|
|
|
|
|
|
|
|
|
203 |
color_id += 1
|
204 |
-
for bbox_id, _ in enumerate(bboxes):
|
205 |
-
if start is None and bbox_id > 0:
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
colored_text = []
|
211 |
prev_start = 0
|
@@ -219,7 +230,7 @@ def main():
|
|
219 |
if end < len(processed_text):
|
220 |
colored_text.append((processed_text[end:len(processed_text)], None))
|
221 |
|
222 |
-
return annotated_image, colored_text
|
223 |
|
224 |
term_of_use = """
|
225 |
### Terms of use
|
@@ -271,12 +282,33 @@ def main():
|
|
271 |
], inputs=[image_input, text_input, do_sample])
|
272 |
gr.Markdown(term_of_use)
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
run_button.click(fn=generate_predictions,
|
275 |
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
|
276 |
-
outputs=[image_output, text_output1],
|
277 |
show_progress=True, queue=True)
|
278 |
|
279 |
-
demo.launch()
|
280 |
|
281 |
|
282 |
if __name__ == "__main__":
|
|
|
8 |
from PIL import Image
|
9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
import cv2
|
11 |
+
import ast
|
12 |
|
13 |
colors = [
|
14 |
(0, 255, 0),
|
|
|
40 |
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
41 |
|
42 |
|
43 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
|
44 |
"""_summary_
|
45 |
Args:
|
46 |
image (_type_): image or image path
|
|
|
70 |
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
71 |
else:
|
72 |
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
73 |
+
|
74 |
if len(entities) == 0:
|
75 |
return image
|
76 |
|
77 |
+
indices = list(range(len(entities)))
|
78 |
+
if entity_index >= 0:
|
79 |
+
indices = [entity_index]
|
80 |
+
|
81 |
# Not to show too many bboxes
|
82 |
entities = entities[:len(color_map)]
|
83 |
|
|
|
97 |
used_colors = colors # random.sample(colors, k=num_bboxes)
|
98 |
|
99 |
color_id = -1
|
100 |
+
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
101 |
color_id += 1
|
102 |
+
if entity_idx not in indices:
|
103 |
+
continue
|
104 |
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
105 |
+
# if start is None and bbox_id > 0:
|
106 |
+
# color_id += 1
|
107 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
108 |
|
109 |
# draw bbox
|
|
|
206 |
|
207 |
color_id = -1
|
208 |
entity_info = []
|
209 |
+
filtered_entities = []
|
210 |
+
for entity in entities:
|
211 |
+
entity_name, (start, end), bboxes = entity
|
212 |
+
if start is None:
|
213 |
+
continue
|
214 |
color_id += 1
|
215 |
+
# for bbox_id, _ in enumerate(bboxes):
|
216 |
+
# if start is None and bbox_id > 0:
|
217 |
+
# color_id += 1
|
218 |
+
entity_info.append(((start, end), color_id))
|
219 |
+
filtered_entities.append(entity)
|
220 |
|
221 |
colored_text = []
|
222 |
prev_start = 0
|
|
|
230 |
if end < len(processed_text):
|
231 |
colored_text.append((processed_text[end:len(processed_text)], None))
|
232 |
|
233 |
+
return annotated_image, colored_text, str(filtered_entities)
|
234 |
|
235 |
term_of_use = """
|
236 |
### Terms of use
|
|
|
282 |
], inputs=[image_input, text_input, do_sample])
|
283 |
gr.Markdown(term_of_use)
|
284 |
|
285 |
+
# record which text span (label) is selected
|
286 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
287 |
+
|
288 |
+
# record the current `entities`
|
289 |
+
entity_output = gr.Textbox(visible=False)
|
290 |
+
|
291 |
+
# get the current selected span label
|
292 |
+
def get_text_span_label(evt: gr.SelectData):
|
293 |
+
if evt.value[-1] is None:
|
294 |
+
return -1
|
295 |
+
return int(evt.value[-1])
|
296 |
+
# and set this information to `selected`
|
297 |
+
text_output1.select(get_text_span_label, None, selected)
|
298 |
+
|
299 |
+
# update output image when we change the span (enity) selection
|
300 |
+
def update_output_image(img_input, image_output, entities, idx):
|
301 |
+
entities = ast.literal_eval(entities)
|
302 |
+
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
303 |
+
return updated_image
|
304 |
+
selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
|
305 |
+
|
306 |
run_button.click(fn=generate_predictions,
|
307 |
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
|
308 |
+
outputs=[image_output, text_output1, entity_output],
|
309 |
show_progress=True, queue=True)
|
310 |
|
311 |
+
demo.launch(share=True)
|
312 |
|
313 |
|
314 |
if __name__ == "__main__":
|