File size: 12,303 Bytes
e8d738f cd04261 699fb43 cd04261 f0c57f7 cd04261 699fb43 cd04261 699fb43 cd04261 699fb43 cd04261 699fb43 3eaff3e 699fb43 cb8dbda 699fb43 979777e e8d738f 699fb43 67336fc 979777e cd04261 cb8dbda 699fb43 cd04261 f0c57f7 cd04261 979777e cd04261 979777e 64d99fc 979777e 64d99fc 979777e 605cc24 979777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import gradio as gr
import random
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
colors = [
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(255, 128, 0),
(255, 0, 128),
(0, 255, 128),
(128, 255, 0),
(128, 0, 255),
(0, 128, 255),
(255, 128, 128),
(128, 255, 128),
(128, 128, 255),
(128, 255, 255),
(255, 128, 255),
(255, 255, 128),
(255, 128, 64),
(255, 64, 128),
(64, 255, 128),
(128, 255, 64),
(128, 64, 255),
(64, 128, 255),
(255, 64, 64),
(64, 255, 64),
(64, 64, 255),
(64, 255, 255),
(255, 64, 255),
(255, 255, 64),
(128, 64, 64),
(64, 128, 64),
(64, 64, 128),
(64, 128, 128),
(128, 64, 128),
(128, 128, 64),
(128, 128, 0),
(128, 0, 128),
(0, 128, 128),
(128, 0, 0),
(0, 128, 0),
(0, 0, 128),
(64, 64, 0),
(64, 0, 64),
(0, 64, 64),
(64, 0, 0),
(0, 64, 0),
(0, 0, 64),
(255, 64, 0),
(255, 0, 64),
(0, 255, 64),
(64, 255, 0),
(64, 0, 255),
(0, 64, 255),
(128, 64, 0),
(128, 0, 64),
(0, 128, 64),
(64, 128, 0),
(128, 0, 255),
(0, 64, 128),
]
color_map = {f"{color_id}": "red" for color_id, color in enumerate(colors)}
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(entities) == 0:
return image
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 2
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_name, (start, end), bboxes in entities:
color_id += 1
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
if start is None and bbox_id > 0:
color_id += 1
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()
return pil_image
def main():
ckpt = "ydshieh/kosmos-2-patch14-224"
model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
user_image_path = "/tmp/user_input_test_image.jpg"
# This will be of `.jpg` format
image_input.save(user_image_path)
# This might give different results from the original argument `image_input`
image_input = Image.open(user_image_path)
if text_input == "Brief":
text_input = "<grounding>An image of"
elif text_input == "Detailed":
text_input = "<grounding>Describe this image in detail:"
else:
text_input = f"<grounding>{text_input}"
inputs = processor(text=text_input, images=image_input, return_tensors="pt")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"][:, :-1],
attention_mask=inputs["attention_mask"][:, :-1],
img_features=None,
img_attn_mask=inputs["img_attn_mask"][:, :-1],
use_cache=True,
max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = processor.post_processor_generation(generated_text)
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
color_id = -1
entity_info = []
for entity_name, (start, end), bboxes in entities:
color_id += 1
for bbox_id, _ in enumerate(bboxes):
if start is None and bbox_id > 0:
color_id += 1
if start is not None:
entity_info.append(((start, end), color_id))
colored_text = []
prev_start = 0
end = 0
for idx, ((start, end), color_id) in enumerate(entity_info):
if start > prev_start:
colored_text.append((processed_text[prev_start:start], None))
colored_text.append((processed_text[start:end], f"{color_id}"))
prev_start = start
if end < len(processed_text):
colored_text.append((processed_text[end:len(processed_text)], None))
return annotated_image, colored_text
term_of_use = """
### Terms of use
By using this model, users are required to agree to the following terms:
The model is intended for academic and research purposes.
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
### License
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
"""
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
gr.Markdown(("""
# Kosmos-2: Grounding Multimodal Large Language Models to the World
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
"""))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Test Image")
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
do_sample = gr.Checkbox(label="Enable Sampling", info="(Please enable it before adjusting sampling parameters below)", value=False)
with gr.Accordion("Sampling parameters", open=False) as sampling_parameters:
sampling_topp = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.9, label="Sampling: Top-P")
sampling_temperature = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.7, label="Sampling: Temperature")
run_button = gr.Button(label="Run", visible=True)
with gr.Column():
image_output = gr.Image(type="pil")
text_output1 = gr.HighlightedText(
label="Generated Description",
combine_adjacent=False,
show_legend=True,
).style(color_map=color_map)
with gr.Row():
with gr.Column():
gr.Examples(examples=[
["images/two_dogs.jpg", "Detailed", False],
["images/snowman.png", "Brief", False],
["images/man_ball.png", "Detailed", False],
], inputs=[image_input, text_input, do_sample])
with gr.Column():
gr.Examples(examples=[
["images/six_planes.png", "Brief", False],
["images/quadrocopter.jpg", "Brief", False],
["images/carnaby_street.jpg", "Brief", False],
], inputs=[image_input, text_input, do_sample])
gr.Markdown(term_of_use)
run_button.click(fn=generate_predictions,
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
outputs=[image_output, text_output1],
show_progress=True, queue=True)
demo.launch()
if __name__ == "__main__":
main()
|