Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,45 +7,42 @@ from huggingface_hub import snapshot_download
|
|
7 |
from dotenv import load_dotenv
|
8 |
load_dotenv()
|
9 |
|
10 |
-
# Load models function
|
11 |
-
def load_models():
|
12 |
-
# Check if CUDA is available
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
# Process text prompt
|
51 |
def process_prompt(prompt, voice, tokenizer, device):
|
@@ -172,13 +169,6 @@ examples = [
|
|
172 |
# Available voices
|
173 |
VOICES = ["tara", "dan", "josh", "emma"]
|
174 |
|
175 |
-
# Load models globally
|
176 |
-
try:
|
177 |
-
snac_model, model, tokenizer, device = load_models()
|
178 |
-
except Exception as e:
|
179 |
-
print(f"Error loading models: {e}")
|
180 |
-
raise
|
181 |
-
|
182 |
# Create Gradio interface
|
183 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
184 |
gr.Markdown("""
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
load_dotenv()
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Check if CUDA is available
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
print("Loading SNAC model...")
|
15 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
16 |
+
snac_model = snac_model.to(device)
|
17 |
+
|
18 |
+
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
19 |
+
|
20 |
+
# Download only model config and safetensors
|
21 |
+
snapshot_download(
|
22 |
+
repo_id=model_name,
|
23 |
+
allow_patterns=[
|
24 |
+
"config.json",
|
25 |
+
"*.safetensors",
|
26 |
+
"model.safetensors.index.json",
|
27 |
+
],
|
28 |
+
ignore_patterns=[
|
29 |
+
"optimizer.pt",
|
30 |
+
"pytorch_model.bin",
|
31 |
+
"training_args.bin",
|
32 |
+
"scheduler.pt",
|
33 |
+
"tokenizer.json",
|
34 |
+
"tokenizer_config.json",
|
35 |
+
"special_tokens_map.json",
|
36 |
+
"vocab.json",
|
37 |
+
"merges.txt",
|
38 |
+
"tokenizer.*"
|
39 |
+
]
|
40 |
+
)
|
41 |
+
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
43 |
+
model.to(device)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
print(f"Orpheus model loaded to {device}")
|
46 |
|
47 |
# Process text prompt
|
48 |
def process_prompt(prompt, voice, tokenizer, device):
|
|
|
169 |
# Available voices
|
170 |
VOICES = ["tara", "dan", "josh", "emma"]
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
# Create Gradio interface
|
173 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
174 |
gr.Markdown("""
|