Orpheus-TTS / app.py
Athspi's picture
Update app.py
7a742e9 verified
raw
history blame
9.28 kB
import os
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set number of threads (adjust based on your CPU cores)
torch.set_num_threads(4)
# Device and torch dtype selection
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
# No-op decorator for CPU mode (if you had GPU-specific decorators)
def gpu_decorator(func):
return func
# Import SNAC after setting device
from snac import SNAC
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
snac_model.eval() # Set SNAC to eval mode
model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only necessary files for the Orpheus model
snapshot_download(
repo_id=model_name,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.to(device)
model.eval() # Set the model to evaluation mode
# Optionally compile the model for PyTorch 2.0+ on CPU (if available)
if hasattr(torch, "compile") and device == "cpu":
try:
model = torch.compile(model)
print("Model compiled with torch.compile")
except Exception as e:
print("torch.compile not supported:", e)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
snac_device = next(snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(code_list) + 1) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1, device=snac_device).unsqueeze(0),
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
@gpu_decorator
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.05, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.2, "Generating tokens...")
with torch.inference_mode():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.4, "Parsing tokens...")
code_list = parse_output(generated_ids)
progress(0.7, "Generating audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, "Done")
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
def convert_model_to_onnx():
"""
Converts the Orpheus model to ONNX format using a dummy prompt.
The exported file will be saved as 'orpheus_model.onnx' in the working directory.
"""
dummy_prompt = "tara: Hello"
dummy_input = tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(device)
file_path = "orpheus_model.onnx"
try:
# Export the model to ONNX format
torch.onnx.export(
model,
dummy_input,
file_path,
export_params=True,
opset_version=14,
input_names=["input_ids"],
output_names=["logits"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
},
)
return f"Model converted to ONNX and saved as '{file_path}'."
except Exception as e:
return f"Error during ONNX conversion: {e}"
# UI examples and voice choices
examples = [
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
]
VOICES = ["tara", "dan", "josh", "emma"]
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
gr.Markdown("""
# 🎵 Orpheus Text-to-Speech
Enter text to hear it converted to natural-sounding speech.
**Tips:**
- Use paralinguistic cues like `<chuckle>` or `<sigh>`.
- Longer text can produce more natural results.
""")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(label="Text to speak", placeholder="Enter your text...", lines=5)
voice = gr.Dropdown(choices=VOICES, value="tara", label="Voice")
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.05, label="Temperature",
info="Higher values produce more varied speech")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P",
info="Nucleus sampling threshold")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition Penalty",
info="Discourage repetition")
max_new_tokens = gr.Slider(minimum=100, maximum=2000, value=1200, step=100, label="Max Length",
info="Maximum generated tokens")
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
audio_output = gr.Audio(label="Generated Speech", type="numpy")
gr.Examples(
examples=examples,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
fn=generate_speech,
cache_examples=True,
)
submit_btn.click(
fn=generate_speech,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None),
inputs=[],
outputs=[text_input, audio_output]
)
gr.Markdown("## ONNX Conversion")
onnx_btn = gr.Button("Convert Model to ONNX")
onnx_output = gr.Textbox(label="Conversion Output")
onnx_btn.click(fn=convert_model_to_onnx, inputs=[], outputs=onnx_output)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)