Spaces:
Runtime error
Runtime error
File size: 9,277 Bytes
5eaee65 b35040f 5eaee65 b35040f 7a742e9 5eaee65 c3ffb57 5eaee65 7a742e9 5eaee65 c3ffb57 7a742e9 c3ffb57 7a742e9 c3ffb57 5eaee65 c3ffb57 7a742e9 c3ffb57 b35040f 5eaee65 7a742e9 5eaee65 b35040f 5eaee65 b35040f 5eaee65 b35040f 7a742e9 5eaee65 b35040f 5eaee65 b35040f 5eaee65 b35040f 5eaee65 b35040f 5eaee65 b35040f 7a742e9 b35040f 7a742e9 5eaee65 ec99653 7a742e9 b35040f 7a742e9 b35040f 7a742e9 b35040f 7a742e9 b35040f 5eaee65 b35040f 5eaee65 7a742e9 b35040f 7a742e9 5eaee65 b35040f 7a742e9 b35040f 7a742e9 b35040f 5eaee65 b35040f 7a742e9 b35040f 5eaee65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set number of threads (adjust based on your CPU cores)
torch.set_num_threads(4)
# Device and torch dtype selection
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
# No-op decorator for CPU mode (if you had GPU-specific decorators)
def gpu_decorator(func):
return func
# Import SNAC after setting device
from snac import SNAC
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
snac_model.eval() # Set SNAC to eval mode
model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only necessary files for the Orpheus model
snapshot_download(
repo_id=model_name,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.to(device)
model.eval() # Set the model to evaluation mode
# Optionally compile the model for PyTorch 2.0+ on CPU (if available)
if hasattr(torch, "compile") and device == "cpu":
try:
model = torch.compile(model)
print("Model compiled with torch.compile")
except Exception as e:
print("torch.compile not supported:", e)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
snac_device = next(snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(code_list) + 1) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1, device=snac_device).unsqueeze(0),
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
@gpu_decorator
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.05, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.2, "Generating tokens...")
with torch.inference_mode():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.4, "Parsing tokens...")
code_list = parse_output(generated_ids)
progress(0.7, "Generating audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, "Done")
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
def convert_model_to_onnx():
"""
Converts the Orpheus model to ONNX format using a dummy prompt.
The exported file will be saved as 'orpheus_model.onnx' in the working directory.
"""
dummy_prompt = "tara: Hello"
dummy_input = tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(device)
file_path = "orpheus_model.onnx"
try:
# Export the model to ONNX format
torch.onnx.export(
model,
dummy_input,
file_path,
export_params=True,
opset_version=14,
input_names=["input_ids"],
output_names=["logits"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
},
)
return f"Model converted to ONNX and saved as '{file_path}'."
except Exception as e:
return f"Error during ONNX conversion: {e}"
# UI examples and voice choices
examples = [
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
]
VOICES = ["tara", "dan", "josh", "emma"]
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
gr.Markdown("""
# 🎵 Orpheus Text-to-Speech
Enter text to hear it converted to natural-sounding speech.
**Tips:**
- Use paralinguistic cues like `<chuckle>` or `<sigh>`.
- Longer text can produce more natural results.
""")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(label="Text to speak", placeholder="Enter your text...", lines=5)
voice = gr.Dropdown(choices=VOICES, value="tara", label="Voice")
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.05, label="Temperature",
info="Higher values produce more varied speech")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P",
info="Nucleus sampling threshold")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition Penalty",
info="Discourage repetition")
max_new_tokens = gr.Slider(minimum=100, maximum=2000, value=1200, step=100, label="Max Length",
info="Maximum generated tokens")
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
audio_output = gr.Audio(label="Generated Speech", type="numpy")
gr.Examples(
examples=examples,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
fn=generate_speech,
cache_examples=True,
)
submit_btn.click(
fn=generate_speech,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None),
inputs=[],
outputs=[text_input, audio_output]
)
gr.Markdown("## ONNX Conversion")
onnx_btn = gr.Button("Convert Model to ONNX")
onnx_output = gr.Textbox(label="Conversion Output")
onnx_btn.click(fn=convert_model_to_onnx, inputs=[], outputs=onnx_output)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False) |