File size: 9,277 Bytes
5eaee65
b35040f
 
 
 
 
5eaee65
 
b35040f
 
7a742e9
 
 
5eaee65
c3ffb57
5eaee65
 
7a742e9
5eaee65
 
 
 
 
c3ffb57
 
 
 
7a742e9
c3ffb57
 
 
7a742e9
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaee65
 
c3ffb57
7a742e9
 
 
 
 
 
 
 
 
 
c3ffb57
 
b35040f
 
 
 
5eaee65
7a742e9
 
5eaee65
 
b35040f
 
 
 
 
 
 
5eaee65
b35040f
 
5eaee65
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a742e9
5eaee65
b35040f
5eaee65
 
 
 
 
 
 
 
 
 
 
b35040f
5eaee65
 
 
b35040f
 
5eaee65
b35040f
5eaee65
b35040f
 
 
 
7a742e9
b35040f
7a742e9
5eaee65
ec99653
 
 
 
 
 
 
 
 
 
 
7a742e9
b35040f
7a742e9
b35040f
7a742e9
 
b35040f
 
 
 
7a742e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
 
5eaee65
b35040f
 
 
 
 
5eaee65
7a742e9
b35040f
7a742e9
 
 
5eaee65
b35040f
 
7a742e9
 
b35040f
7a742e9
 
 
 
 
 
 
 
b35040f
 
 
 
 
5eaee65
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a742e9
 
 
 
 
b35040f
 
5eaee65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set number of threads (adjust based on your CPU cores)
torch.set_num_threads(4)

# Device and torch dtype selection
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32

# No-op decorator for CPU mode (if you had GPU-specific decorators)
def gpu_decorator(func):
    return func

# Import SNAC after setting device
from snac import SNAC

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
snac_model.eval()  # Set SNAC to eval mode

model_name = "canopylabs/orpheus-3b-0.1-ft"

# Download only necessary files for the Orpheus model
snapshot_download(
    repo_id=model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)

print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.to(device)
model.eval()  # Set the model to evaluation mode

# Optionally compile the model for PyTorch 2.0+ on CPU (if available)
if hasattr(torch, "compile") and device == "cpu":
    try:
        model = torch.compile(model)
        print("Model compiled with torch.compile")
    except Exception as e:
        print("torch.compile not supported:", e)

tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids

    start_token = torch.tensor([[128259]], dtype=torch.int64)
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)

    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258

    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)

    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    snac_device = next(snac_model.parameters()).device
    layer_1, layer_2, layer_3 = [], [], []
    for i in range((len(code_list) + 1) // 7):
        layer_1.append(code_list[7 * i])
        layer_2.append(code_list[7 * i + 1] - 4096)
        layer_3.append(code_list[7 * i + 2] - (2 * 4096))
        layer_3.append(code_list[7 * i + 3] - (3 * 4096))
        layer_2.append(code_list[7 * i + 4] - (4 * 4096))
        layer_3.append(code_list[7 * i + 5] - (5 * 4096))
        layer_3.append(code_list[7 * i + 6] - (6 * 4096))

    codes = [
        torch.tensor(layer_1, device=snac_device).unsqueeze(0),
        torch.tensor(layer_2, device=snac_device).unsqueeze(0),
        torch.tensor(layer_3, device=snac_device).unsqueeze(0)
    ]
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()

@gpu_decorator
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    try:
        progress(0.05, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        progress(0.2, "Generating tokens...")
        with torch.inference_mode():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        progress(0.4, "Parsing tokens...")
        code_list = parse_output(generated_ids)
        progress(0.7, "Generating audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        progress(1.0, "Done")
        return (24000, audio_samples)
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

def convert_model_to_onnx():
    """
    Converts the Orpheus model to ONNX format using a dummy prompt.
    The exported file will be saved as 'orpheus_model.onnx' in the working directory.
    """
    dummy_prompt = "tara: Hello"
    dummy_input = tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(device)
    file_path = "orpheus_model.onnx"
    try:
        # Export the model to ONNX format
        torch.onnx.export(
            model,
            dummy_input,
            file_path,
            export_params=True,
            opset_version=14,
            input_names=["input_ids"],
            output_names=["logits"],
            dynamic_axes={
                "input_ids": {0: "batch_size", 1: "sequence_length"},
                "logits": {0: "batch_size", 1: "sequence_length"}
            },
        )
        return f"Model converted to ONNX and saved as '{file_path}'."
    except Exception as e:
        return f"Error during ONNX conversion: {e}"

# UI examples and voice choices
examples = [
    ["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
    ["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
    ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
]
VOICES = ["tara", "dan", "josh", "emma"]

with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
    gr.Markdown("""
    # 🎵 Orpheus Text-to-Speech
    Enter text to hear it converted to natural-sounding speech.
    
    **Tips:**
    - Use paralinguistic cues like `<chuckle>` or `<sigh>`.
    - Longer text can produce more natural results.
    """)
    with gr.Row():
        with gr.Column(scale=3):
            text_input = gr.Textbox(label="Text to speak", placeholder="Enter your text...", lines=5)
            voice = gr.Dropdown(choices=VOICES, value="tara", label="Voice")
            with gr.Accordion("Advanced Settings", open=False):
                temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.05, label="Temperature",
                                        info="Higher values produce more varied speech")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P",
                                  info="Nucleus sampling threshold")
                repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition Penalty",
                                               info="Discourage repetition")
                max_new_tokens = gr.Slider(minimum=100, maximum=2000, value=1200, step=100, label="Max Length",
                                           info="Maximum generated tokens")
            with gr.Row():
                submit_btn = gr.Button("Generate Speech", variant="primary")
                clear_btn = gr.Button("Clear")
        with gr.Column(scale=2):
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
    
    gr.Examples(
        examples=examples,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output,
        fn=generate_speech,
        cache_examples=True,
    )
    
    submit_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output
    )
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=[],
        outputs=[text_input, audio_output]
    )
    
    gr.Markdown("## ONNX Conversion")
    onnx_btn = gr.Button("Convert Model to ONNX")
    onnx_output = gr.Textbox(label="Conversion Output")
    onnx_btn.click(fn=convert_model_to_onnx, inputs=[], outputs=onnx_output)

if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)