atereoyinn commited on
Commit
7370511
·
1 Parent(s): c02053a

removed timeout and return the beam size to 5 and set up an enviroment vaiarable

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -7,6 +7,11 @@ import csv
7
  import json
8
  import tempfile
9
  import torch
 
 
 
 
 
10
 
11
 
12
  # Initiate checkpoints for model loading
@@ -28,7 +33,7 @@ llama_tokenizer = AutoTokenizer.from_pretrained(llama_checkpoint)
28
  # Function to transcribe audio
29
  def transcribe_audio(audio_file_path):
30
  try:
31
- segments, info = whisper_model.transcribe(audio_file_path, beam_size=1)
32
  text = "".join([segment.text for segment in segments])
33
  return text
34
  except Exception as e:
@@ -193,8 +198,7 @@ demo = gr.Interface(
193
  gr.Textbox(label="Plan of Action"),
194
  ],
195
  title="Medical Diagnostic Form Assistant",
196
- description="Upload an audio file or record audio to generate a medical diagnostic form.",
197
- max_timeout=300
198
  )
199
 
200
  with demo:
 
7
  import json
8
  import tempfile
9
  import torch
10
+ import os
11
+
12
+ # Set environment variables for gradio
13
+ os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
14
+
15
 
16
 
17
  # Initiate checkpoints for model loading
 
33
  # Function to transcribe audio
34
  def transcribe_audio(audio_file_path):
35
  try:
36
+ segments, info = whisper_model.transcribe(audio_file_path, beam_size=5)
37
  text = "".join([segment.text for segment in segments])
38
  return text
39
  except Exception as e:
 
198
  gr.Textbox(label="Plan of Action"),
199
  ],
200
  title="Medical Diagnostic Form Assistant",
201
+ description="Upload an audio file or record audio to generate a medical diagnostic form."
 
202
  )
203
 
204
  with demo: