|
import gradio as gr |
|
import spaces |
|
import torch |
|
|
|
import transformers |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "meta-llama/Meta-Llama-3-8B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16,device_map="auto") |
|
|
|
|
|
@spaces.GPU |
|
def yes_man(message, history): |
|
input_ids = tokenizer(message, return_tensors="pt").input_ids.to(model.device) |
|
output = model.generate(input_ids, max_length=512, num_return_sequences=1) |
|
detailed_prompt = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return detailed_prompt |
|
|
|
gr.ChatInterface( |
|
yes_man, |
|
chatbot=gr.Chatbot(height=300), |
|
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), |
|
title="LLAMA 3 8B Chat", |
|
description="Ask Yes Man any question", |
|
theme="soft", |
|
examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], |
|
cache_examples=True, |
|
retry_btn=None, |
|
undo_btn="Delete Previous", |
|
clear_btn="Clear", |
|
).launch() |