Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
learn = load_learner('final_resnet34_derma_model.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred, pred_idx, probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
image = gr.inputs.Image(shape=(400, 400)) | |
label = gr.outputs.Label() | |
examples = ['nevus.jpg', 'keratosis.jpg', 'melanoma.jpg'] | |
title = "DermaDoc Skin Lesion Analyzer" | |
description = """This is a simple demo of how deep learning models \ | |
can be trained for medical applications. \ | |
The model distinguishes between two benign skin lesions (nevus and keratosis) \ | |
and a malignant one (melanoma). It has an accuracy of 81 %""" | |
interpretation='default' | |
enable_queue=True | |
iface = gr.Interface(fn=predict, inputs=image, outputs=label,title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue) | |
iface.launch() |