tingyuansen commited on
Commit
d92d70b
1 Parent(s): 51616ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -147
README.md CHANGED
@@ -1,52 +1,37 @@
1
- ---
2
- title: README
3
- emoji: 📈
4
- colorFrom: indigo
5
- colorTo: gray
6
- sdk: static
7
- pinned: false
8
- ---
9
-
10
 
11
  ## Who We Are
12
 
13
- AstroMLab is a dynamic group of *astrophysicists* and *computer scientists* passionate about pushing the boundaries of **Large Language Models (LLMs)in astronomy**. Our team includes:
14
-
15
- - *Leading astronomers, astrophysicists, and cosmologists*
16
- - *Top natural language processing experts* from Oak Ridge National Laboratory and Argonne National Laboratory
17
- - *Frontier arXivists* from the NASA Astrophysics Data System
18
- - *Enthusiastic young researchers* bridging the gap between astronomy and LLMs
19
 
20
- While LLMs are advancing rapidly, we believe that real progress in *AI-driven astronomical research* requires *deep domain knowledge*. This conviction drives us to tackle the challenges in applying LLMs to astronomy head-on.
 
 
 
21
 
22
- ## Our Goals
23
 
24
- Our ultimate aim is to:
 
 
25
 
26
- 1. Develop specialized LLMs for astronomy
27
- 2. Create **reliable, light-weight, and open-source models** adaptable for advanced research agents
28
- 3. **Expedite scientific discovery** through LLM-driven end-to-end research
29
- 4. Push the boundaries of what's possible in astronomical research
30
 
31
- ## Our Achievements
32
 
33
- Despite being a young group, we've made significant strides:
 
 
34
 
35
- - Curated the **first extensive astronomy-based benchmarking dataset** using high-quality review articles ([Ting et al. 2024](https://arxiv.org/abs/2407.11194))
36
- - Explored training of specialized astronomy LLMs
37
- - Released three model sets:
38
- - **AstroSage-8B** (coming soon, de Haan et al. 2024)
39
- - **AstroLLaMA-2-70B** ([Pan et al. 2024](https://arxiv.org/abs/2407.11194))
40
- - **AstroLLaMA-3-8B** ([Pan et al. 2024](https://arxiv.org/abs/2407.11194))
41
- - AstroLLaMA-2-7B ([Perkowski et al. 2024](https://arxiv.org/abs/2401.01916), [Nguyen et al. 2023](https://arxiv.org/abs/2309.06126), developed during our time at *UniverseTBD*)
42
 
43
- Our flagship model, AstroSage-8B, demonstrates remarkable performance when compared to other models in the 7B class. It achieves a substantial lead of 3.5 percentage points over its closest competitor, which translates to an estimated **10-fold reduction** in computational costs (see the [AstroBench page](benchmarking.html) for details).
44
 
45
  | Model | Score (%) |
46
  |-------|-----------|
47
- | **<span style="color: #3366cc;">AstroSage-8B (AstroMLab)</span>** | **<span style="color: #3366cc;">77.2</span>** |
48
  | LLaMA-3.1-8B | 73.7 |
49
- | **<span style="color: #3366cc;">AstroLLaMA-2-70B (AstroMLab)</span>** | **<span style="color: #3366cc;">72.3</span>** |
50
  | Gemma-2-9B | 71.5 |
51
  | Qwen-2.5-7B | 70.4 |
52
  | Yi-1.5-9B | 68.4 |
@@ -55,124 +40,19 @@ Our flagship model, AstroSage-8B, demonstrates remarkable performance when compa
55
  | ChatGLM3-6B | 50.4 |
56
  | AstroLLaMA-2-7B (UniverseTBD) | 44.3 |
57
 
58
- ![Cost and performance trade-off in astronomical Q&A](figures/AstroBench.png)
59
-
60
- The exceptional performance of AstroSage-8B showcases the potential for more efficient and cost-effective agentic research in astronomy. This advancement opens up new possibilities for widespread application of AI in astronomical research, making sophisticated analysis more accessible to a broader range of institutions and researchers.
61
-
62
-
63
- ## Open Source Commitment
64
-
65
- We are fully committed to open source:
66
-
67
- - All our models are released on **Hugging Face**
68
- - Find our models here: [AstroMLab on Hugging Face](https://huggingface.co/AstroMLab)
69
-
70
 
71
- ## Our Support and Vision
72
 
73
- We are grateful for our supporters:
74
 
75
  - Access to the Frontier nodes at Oak Ridge Leadership Computing Facility
76
- - Backing from Microsoft's Accelerating Foundation Models Research (AFMR)
77
-
78
-
79
- ## Join Us
80
-
81
- Our team is expanding, and we'd love to hear from you!
82
-
83
- - Contact us: [[email protected]](mailto:[email protected])
84
-
85
- <br>
86
-
87
- ---
88
-
89
- ## Team
90
-
91
- <table>
92
- <tr>
93
- <td align="center" width="25%"><img src="figures/Members_Yuan-Sen_Ting.png" alt="Yuan-Sen Ting"></td>
94
- <td align="center" width="25%"><img src="figures/Members_Tirthankar_Ghosal.png" alt="Tirthankar Ghosal"></td>
95
- <td align="center" width="25%"><img src="figures/Members_Tijmen_de_Haan.png" alt="Tijmen de Haan"></td>
96
- <td align="center" width="25%"><img src="figures/Members_Josh_Nguyen.png" alt="Josh Nguyen"></td>
97
- </tr>
98
- <tr>
99
- <td align="center"><strong>Yuan-Sen Ting</strong><br>The Ohio State University</td>
100
- <td align="center"><strong>Tirthankar Ghosal</strong><br>Oak Ridge National Laboratory</td>
101
- <td align="center"><strong>Tijmen de Haan</strong><br>KEK</td>
102
- <td align="center"><strong>Josh Nguyen</strong><br>University of Pennsylvania</td>
103
- </tr>
104
- <tr>
105
- <td align="center"><img src="figures/Members_Rui_Pan.png" alt="Rui Pan"></td>
106
- <td align="center"><img src="figures/Members_Hardik_Arora.png" alt="Hardik Arora"></td>
107
- <td align="center"><img src="figures/Members_Emily_Herron.png" alt="Emily Herron"></td>
108
- <td align="center"><img src="figures/Members_Yuwei_Yang.png" alt="Yuwei Yang"></td>
109
- </tr>
110
- <tr>
111
- <td align="center"><strong>Rui Pan</strong><br>University of Illinois Urbana-Champaign</td>
112
- <td align="center"><strong>Hardik Arora</strong><br>Indian Institutes of Technology</td>
113
- <td align="center"><strong>Emily Herron</strong><br>Oak Ridge National Laboratory</td>
114
- <td align="center"><strong>Yuwei Yang</strong><br>Australian National University</td>
115
- </tr>
116
- <tr>
117
- <td align="center"><img src="figures/Members_Zechang_Sun.png" alt="Alberto Accomazzi"></td>
118
- <td align="center"><img src="figures/Members_Alberto_Accomazzi.png" alt="Alberto Accomazzi"></td>
119
- <td align="center"><img src="figures/Members_Argonne.png" alt="Azton Wells"></td>
120
- <td align="center"><img src="figures/Members_Nesar_Ramachandra.png" alt="Nesar Ramachandra"></td>
121
- <td align="center"><img src="figures/Members_Sandeep_Madireddy.png" alt="Sandeep Madireddy"></td>
122
- </tr>
123
- <tr>
124
- <td align="center"><strong>Zechang Sun</strong><br>Tsinghua University</td>
125
- <td align="center"><strong>Alberto Accomazzi</strong><br>NASA Astrophysics Data System</td>
126
- <td align="center"><strong>Azton Wells</strong><br>Argonne National Laboratory</td>
127
- <td align="center"><strong>Nesar Ramachandra</strong><br>Argonne National Laboratory</td>
128
- </tr>
129
- <tr>
130
- <td align="center"><img src="figures/Members_Sandeep_Madireddy.png" alt="Sandeep Madireddy"></td>
131
- </tr>
132
- <tr>
133
- <td align="center"><strong>Sandeep Madireddy</strong><br>Argonne National Laboratory</td>
134
- </tr>
135
- </table>
136
-
137
- <br>
138
-
139
- ---
140
-
141
- ## Publications
142
-
143
- ### AstroMLab 1: Who Wins Astronomy Jeopardy!?
144
-
145
- **[Yuan-Sen Ting, et al., 2024, arXiv:2407.11194](https://arxiv.org/abs/2407.11194)**
146
-
147
- We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics.
148
-
149
- Key findings:
150
- - Claude-3.5-Sonnet outperforms competitors, achieving 85.0% accuracy.
151
- - Open-weights models like LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now compete with some of the best proprietary models.
152
- - We identify performance variations across astronomical subfields, with challenges in exoplanet-related fields, stellar astrophysics, and instrumentation.
153
- - Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness.
154
- - The rapid progress suggests that LLM-driven research in astronomy may become feasible in the near future.
155
-
156
-
157
- <br>
158
-
159
- ### AstroMLab 2: AstroLLaMA-2-70B Model and Benchmarking Specialised LLMs for Astronomy
160
-
161
- **[Rui Pan, Josh Nguyen, et al., 2024](https://arxiv.org/abs/2407.11194)**
162
-
163
- We introduce new models: AstroLLaMA-3-8B and AstroLLaMA-2-70B, building upon the previous AstroLLaMA series and quantitatively assess specialized LLMs in astronomy, leveraging recently curated high-quality astronomical MCQs.
164
-
165
- Key points:
166
- - Previously released AstroLLaMA series (based on LLaMA-2-7B) underperforms compared to the native LLaMA model.
167
- - Performance degradation can be partially mitigated by using high-quality data for continual pretraining.
168
- - Continual pretraining on the 70B model can yield improvements, despite observed catastrophic forgetting in smaller models.
169
-
170
- <br>
171
 
172
- ### Legacy Output: The AstroLLaMA Series
173
 
174
- 1. **[Josh Nguyen, et al., 2023, arXiv:2309.06126](https://arxiv.org/abs/2309.06126)**
175
- 2. **[Ernest Perkowski, Rui Pan, et al., 2024, arXiv:2401.01916](https://arxiv.org/abs/2401.01916)**
176
 
177
- The first open-source conversational AI tool tailored for the astronomy community -- AstroLLaMA-2-7B and AstroLLaMA-2-7B-Chat.
178
 
 
 
1
+ # AstroMLab: Advancing Astronomy with AI
 
 
 
 
 
 
 
 
2
 
3
  ## Who We Are
4
 
5
+ AstroMLab is a diverse group of researchers dedicated to advancing the application of Large Language Models (LLMs) in astronomy. Our team includes:
 
 
 
 
 
6
 
7
+ - Leading astronomers, astrophysicists, and cosmologists
8
+ - Natural language processing experts from Oak Ridge National Laboratory and Argonne National Laboratory
9
+ - Frontier arXivists from the NASA Astrophysics Data System
10
+ - Early career researchers bridging astronomy and AI
11
 
12
+ ## Objectives
13
 
14
+ - Develop specialized LLMs for astronomy
15
+ - Create open-source models for advanced research
16
+ - Facilitate LLM-driven end-to-end research in astronomy
17
 
18
+ ## Current Work
 
 
 
19
 
20
+ Our ongoing projects include:
21
 
22
+ - Curation of an astronomy-based benchmarking dataset
23
+ - Development of specialized astronomy LLMs
24
+ - Performance evaluation of models on astronomical tasks
25
 
26
+ ## Models and Performance
 
 
 
 
 
 
27
 
28
+ We have developed several models, including AstroSage-8B, AstroLLaMA-2-70B, and AstroLLaMA-3-8B. Our AstroSage-8B model has demonstrated strong performance in astronomy Q&A tasks:
29
 
30
  | Model | Score (%) |
31
  |-------|-----------|
32
+ | AstroSage-8B (AstroMLab) | 77.2 |
33
  | LLaMA-3.1-8B | 73.7 |
34
+ | AstroLLaMA-2-70B (AstroMLab) | 72.3 |
35
  | Gemma-2-9B | 71.5 |
36
  | Qwen-2.5-7B | 70.4 |
37
  | Yi-1.5-9B | 68.4 |
 
40
  | ChatGLM3-6B | 50.4 |
41
  | AstroLLaMA-2-7B (UniverseTBD) | 44.3 |
42
 
43
+ AstroSage-8B, our lightweight model, currently achieves the highest score in this comparison.
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ ## Support and Resources
46
 
47
+ Our research benefits from:
48
 
49
  - Access to the Frontier nodes at Oak Ridge Leadership Computing Facility
50
+ - Support from Microsoft's Accelerating Foundation Models Research (AFMR) program
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ ## Open Science
53
 
54
+ We are committed to open science principles. Our models are available on [Hugging Face](https://huggingface.co/AstroMLab).
 
55
 
56
+ ## Contact
57
 
58
+ For inquiries or collaboration opportunities, please contact: [email protected]