Spaces:
Running
Running
File size: 8,265 Bytes
373220b a6ce7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import os
import requests
from huggingface_hub import InferenceClient
import google.generativeai as genai
import openai
def api_check_msg(api_key, selected_model):
res = validate_api_key(api_key, selected_model)
return res["message"]
def validate_api_key(api_key, selected_model):
# Check if the API key is valid for GPT-3.5-Turbo
if "GPT" in selected_model:
url = "https://api.openai.com/v1/models"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
else:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Status code: {response.status_code}</p>'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid OpenAI API Key. Error: {e}</p>'}
elif "Llama" in selected_model:
url = "https://huggingface.co/api/whoami-v2"
headers = {
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
else:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Status code: {response.status_code}</p>'}
except requests.exceptions.RequestException as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Hugging Face API Key. Error: {e}</p>'}
elif "Gemini" in selected_model:
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Help me diagnose the patient.")
return {"is_valid": True, "message": '<p style="color: green;">API Key is valid!</p>'}
except Exception as e:
return {"is_valid": False, "message": f'<p style="color: red;">Invalid Google API Key. Error: {e}</p>'}
def generate_text_chatgpt(key, prompt, temperature, top_p):
openai.api_key = key
prompt_template = f"""
{prompt} <Choose only one among the words Psoriasis, Arthritis, Bronchial asthma or Cervical spondylosis>
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
{"role": "user", "content": prompt_template}],
temperature=temperature,
max_tokens=50,
top_p=top_p,
frequency_penalty=0
)
return response.choices[0].message.content
def generate_text_gemini(key, prompt, temperature, top_p):
genai.configure(api_key=key)
prompt_template = f"""
{prompt} <Choose only one among the words Psoriasis, Arthritis, Bronchial asthma or Cervical spondylosis>
"""
generation_config = genai.GenerationConfig(
max_output_tokens=len(prompt_template)+50,
temperature=temperature,
top_p=top_p,
)
model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)
response = model.generate_content(prompt_template)
return response.text
def generate_text_llama(key, prompt, temperature, top_p):
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
client = InferenceClient(api_key=key)
prompt_template = f"""
{prompt} <Choose only one among the words Psoriasis, Arthritis, Bronchial asthma or Cervical spondylosis>
Do not list the symptoms again in the response. Do not add any additional text. Do not attempt to explain your answer.
"""
messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."},
{"role": "user","content": prompt_template}]
completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=len(prompt_template)+50,
temperature=temperature,
top_p=top_p
)
response = completion.choices[0].message.content
if len(response) > len(prompt_template):
return response[len(prompt_template):]
return response
def diagnose(key, model, top_k, temperature, symptom_prompt):
model_map = {
"GPT-3.5-Turbo": "GPT",
"Llama-3": "Llama",
"Gemini-1.5": "Gemini"
}
if symptom_prompt:
if "GPT" in model:
message = generate_text_chatgpt(key, symptom_prompt, temperature, top_k)
elif "Llama" in model:
message = generate_text_llama(key, symptom_prompt, temperature, top_k)
elif "Gemini" in model:
message = generate_text_gemini(key, symptom_prompt, temperature, top_k)
else:
message = "Incorrect model, please try again."
else:
message = "Please add the symptoms data"
return message
def update_model_components(selected_model):
model_map = {
"GPT-3.5-Turbo": "GPT",
"Llama-3": "Llama",
"Gemini-1.5": "Gemini"
}
link_map = {
"GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys",
"Llama-3": "https://hf.co/settings/tokens",
"Gemini-1.5": "https://aistudio.google.com/apikey"
}
textbox_label = f"Please input the API key for your {model_map[selected_model]} model"
button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here."
button_link = link_map[selected_model]
return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link)
def toggle_button(symptoms_text, api_key, model):
if symptoms_text.strip() and validate_api_key(api_key, model):
return gr.update(interactive=True)
return gr.update(interactive=False)
with gr.Blocks() as ui:
with gr.Row(equal_height=500):
with gr.Column(scale=1, min_width=300):
model = gr.Radio(label="LLM Selection", value="GPT-3.5-Turbo",
choices=["GPT-3.5-Turbo", "Llama-3", "Gemini-1.5"])
is_valid = False
key = gr.Textbox(label="Please input the API key for your Large Language model", type="password")
status_message = gr.HTML(label="Validation Status")
key.input(fn=api_check_msg, inputs=[key, model], outputs=status_message)
button = gr.Button(value="Don't have an API key? Get one for the GPT model here.", link="https://platform.openai.com/account/api-keys")
model.change(update_model_components, inputs=model, outputs=[key, button])
gr.ClearButton(key, variant="primary")
with gr.Column(scale=2, min_width=600):
gr.Markdown("## Hello, Welcome to the GUI by Team #9.")
temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.05, label="Temperature", info="Set the Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step = 0.05, label="top-p value", info="Set the sampling nucleus parameter")
symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis")
llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False)
symptoms.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
key.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
model.change(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn)
output = gr.Textbox(label="LLM Output Status", interactive=False, placeholder="Output will appear here...")
llm_btn.click(fn=diagnose, inputs=[key, model, top_p, temperature, symptoms], outputs=output, api_name="LLM_Comparator")
ui.launch(share=True) |