Spaces:
Sleeping
Sleeping
Upload inference_i2mv_sdxl.py
Browse files- inference_i2mv_sdxl.py +428 -0
inference_i2mv_sdxl.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoModelForImageSegmentation
|
10 |
+
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
|
15 |
+
|
16 |
+
|
17 |
+
from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
|
18 |
+
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
|
19 |
+
from mvadapter.utils import (
|
20 |
+
get_orthogonal_camera,
|
21 |
+
get_plucker_embeds_from_cameras_ortho,
|
22 |
+
make_image_grid,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def prepare_pipeline(
|
27 |
+
base_model,
|
28 |
+
vae_model,
|
29 |
+
unet_model,
|
30 |
+
lora_model,
|
31 |
+
adapter_path,
|
32 |
+
scheduler,
|
33 |
+
num_views,
|
34 |
+
device,
|
35 |
+
dtype,
|
36 |
+
):
|
37 |
+
# Load vae and unet if provided
|
38 |
+
pipe_kwargs = {}
|
39 |
+
if vae_model is not None:
|
40 |
+
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
|
41 |
+
if unet_model is not None:
|
42 |
+
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
|
43 |
+
|
44 |
+
# Prepare pipeline
|
45 |
+
pipe: MVAdapterI2MVSDXLPipeline
|
46 |
+
pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
|
47 |
+
|
48 |
+
# Load scheduler if provided
|
49 |
+
scheduler_class = None
|
50 |
+
if scheduler == "ddpm":
|
51 |
+
scheduler_class = DDPMScheduler
|
52 |
+
elif scheduler == "lcm":
|
53 |
+
scheduler_class = LCMScheduler
|
54 |
+
|
55 |
+
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
|
56 |
+
pipe.scheduler,
|
57 |
+
shift_mode="interpolated",
|
58 |
+
shift_scale=8.0,
|
59 |
+
scheduler_class=scheduler_class,
|
60 |
+
)
|
61 |
+
pipe.init_custom_adapter(num_views=num_views)
|
62 |
+
pipe.load_custom_adapter(
|
63 |
+
adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
|
64 |
+
)
|
65 |
+
|
66 |
+
pipe.to(device=device, dtype=dtype)
|
67 |
+
pipe.cond_encoder.to(device=device, dtype=dtype)
|
68 |
+
|
69 |
+
# load lora if provided
|
70 |
+
if lora_model is not None:
|
71 |
+
model_, name_ = lora_model.rsplit("/", 1)
|
72 |
+
pipe.load_lora_weights(model_, weight_name=name_)
|
73 |
+
|
74 |
+
# vae slicing for lower memory usage
|
75 |
+
pipe.enable_vae_slicing()
|
76 |
+
|
77 |
+
return pipe
|
78 |
+
|
79 |
+
def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = None):
|
80 |
+
"""
|
81 |
+
Applies a pre-existing mask to an image to make the background transparent.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
image (PIL.Image.Image): The input image.
|
85 |
+
net: Pre-trained neural network (not used but kept for compatibility).
|
86 |
+
transform: Image transformation object (not used but kept for compatibility).
|
87 |
+
device: Device used for inference (not used but kept for compatibility).
|
88 |
+
mask (PIL.Image.Image, optional): The mask to use. Should be the same size
|
89 |
+
as the input image, with values between 0 and 255 (or 0-1).
|
90 |
+
If None, will return image with no changes.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
PIL.Image.Image: The modified image with transparent background.
|
94 |
+
"""
|
95 |
+
if mask is None:
|
96 |
+
return image
|
97 |
+
|
98 |
+
image_size = image.size
|
99 |
+
if mask.size != image_size:
|
100 |
+
mask = mask.resize(image_size) # Resizing the mask if it is not the same size as image
|
101 |
+
|
102 |
+
image.putalpha(mask)
|
103 |
+
return image
|
104 |
+
|
105 |
+
|
106 |
+
# def remove_bg(image, net, transform, device):
|
107 |
+
# image_size = image.size
|
108 |
+
# input_images = transform(image).unsqueeze(0).to(device)
|
109 |
+
# with torch.no_grad():
|
110 |
+
# preds = net(input_images)[0].sigmoid().cpu()
|
111 |
+
# #preds = net(input_images)[-1] if isinstance(net(input_images), list) else net(input_images)
|
112 |
+
# pred = preds[0].squeeze()
|
113 |
+
# pred_pil = transforms.ToPILImage()(pred)
|
114 |
+
# mask = pred_pil.resize(image_size)
|
115 |
+
# image.putalpha(mask)
|
116 |
+
# return image
|
117 |
+
|
118 |
+
|
119 |
+
# def remove_bg(image: Image.Image, net, transform, device):
|
120 |
+
# """
|
121 |
+
# Applies a pre-existing mask to an image to make the background transparent.
|
122 |
+
# Args:
|
123 |
+
# image (PIL.Image.Image): The input image.
|
124 |
+
# net: Pre-trained neural network (not used but kept for compatibility).
|
125 |
+
# transform: Image transformation object (not used but kept for compatibility).
|
126 |
+
# device: Device used for inference (not used but kept for compatibility).
|
127 |
+
# Returns:
|
128 |
+
# PIL.Image.Image: The modified image with transparent background.
|
129 |
+
# """
|
130 |
+
# image_size = image.size
|
131 |
+
# input_images = transform(image).unsqueeze(0).to(device)
|
132 |
+
|
133 |
+
# with torch.no_grad():
|
134 |
+
# preds = net(input_images)[-1].sigmoid().cpu()
|
135 |
+
|
136 |
+
# pred = preds[0].squeeze()
|
137 |
+
# pred_pil = transforms.ToPILImage()(pred)
|
138 |
+
|
139 |
+
# # Resize the mask to match the original image size
|
140 |
+
# mask = pred_pil.resize(image_size, Image.LANCZOS)
|
141 |
+
|
142 |
+
# # Create a new image with the same size and mode as the original
|
143 |
+
# output_image = Image.new("RGBA", image_size)
|
144 |
+
|
145 |
+
# # Apply the mask to the original image
|
146 |
+
# image.putalpha(mask)
|
147 |
+
|
148 |
+
# # Composite the original image with the mask
|
149 |
+
# output_image.paste(image, (0, 0), image)
|
150 |
+
|
151 |
+
# return output_image
|
152 |
+
|
153 |
+
|
154 |
+
def remove_bg(image: Image.Image, net, transform, device, mask: np.ndarray = None):
|
155 |
+
"""
|
156 |
+
Applies a pre-existing mask to an image to make the background transparent.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
image (PIL.Image.Image): The input image.
|
160 |
+
net: Pre-trained neural network (not used but kept for compatibility).
|
161 |
+
transform: Image transformation object (not used but kept for compatibility).
|
162 |
+
device: Device used for inference (not used but kept for compatibility).
|
163 |
+
mask (np.ndarray, optional): The mask to use. Should be the same size
|
164 |
+
as the input image, with values between 0 and 255.
|
165 |
+
If None, will return image with no changes.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
PIL.Image.Image: The modified image with transparent background.
|
169 |
+
"""
|
170 |
+
if mask is None:
|
171 |
+
return image
|
172 |
+
|
173 |
+
# Ensure the mask is in the correct format
|
174 |
+
if mask.ndim == 2: # If mask is 2D (H, W)
|
175 |
+
mask = mask.astype(np.uint8) # Ensure mask is uint8
|
176 |
+
mask = np.expand_dims(mask, axis=-1) # Add channel dimension
|
177 |
+
|
178 |
+
# Convert the mask to PIL Image
|
179 |
+
mask_pil = Image.fromarray(mask.squeeze(2) * 255) # Convert to binary mask
|
180 |
+
|
181 |
+
# Resize the mask to match the original image size
|
182 |
+
mask_pil = mask_pil.resize(image.size, Image.LANCZOS)
|
183 |
+
|
184 |
+
# Create a new image with the same size and mode as the original
|
185 |
+
output_image = Image.new("RGBA", image.size)
|
186 |
+
|
187 |
+
# Apply the mask to the original image
|
188 |
+
image.putalpha(mask_pil)
|
189 |
+
|
190 |
+
# Composite the original image with the mask
|
191 |
+
output_image.paste(image, (0, 0), image)
|
192 |
+
|
193 |
+
return output_image
|
194 |
+
|
195 |
+
|
196 |
+
# def preprocess_image(image: Image.Image, height, width):
|
197 |
+
|
198 |
+
# alpha = image[..., 3] > 0
|
199 |
+
# # alpha = image
|
200 |
+
|
201 |
+
# #if image.mode in ("RGBA", "LA"):
|
202 |
+
# # image = np.array(image)
|
203 |
+
# # alpha = image[..., 3] # Extract the alpha channel
|
204 |
+
# #elif image.mode in ("RGB"):
|
205 |
+
# # image = np.array(image)
|
206 |
+
# # Create default alpha for non-alpha images
|
207 |
+
# # alpha = np.ones(image[..., 0].shape, dtype=np.uint8) * 255 # Create
|
208 |
+
# H, W = alpha.shape
|
209 |
+
# # get the bounding box of alpha
|
210 |
+
# y, x = np.where(alpha)
|
211 |
+
# y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
212 |
+
# x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
213 |
+
# image_center = image[y0:y1, x0:x1]
|
214 |
+
# # resize the longer side to H * 0.9
|
215 |
+
# H, W, _ = image_center.shape
|
216 |
+
# if H > W:
|
217 |
+
# W = int(W * (height * 0.9) / H)
|
218 |
+
# H = int(height * 0.9)
|
219 |
+
# else:
|
220 |
+
# H = int(H * (width * 0.9) / W)
|
221 |
+
# W = int(width * 0.9)
|
222 |
+
# image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
223 |
+
# # pad to H, W
|
224 |
+
# start_h = (height - H) // 2
|
225 |
+
# start_w = (width - W) // 2
|
226 |
+
# image = np.zeros((height, width, 4), dtype=np.uint8)
|
227 |
+
# image[start_h : start_h + H, start_w : start_w + W] = image_center
|
228 |
+
# image = image.astype(np.float32) / 255.0
|
229 |
+
# image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
230 |
+
# image = (image * 255).clip(0, 255).astype(np.uint8)
|
231 |
+
# image = Image.fromarray(image)
|
232 |
+
|
233 |
+
# return image
|
234 |
+
|
235 |
+
def preprocess_image(image: Image.Image, height, width):
|
236 |
+
# Convert image to numpy array
|
237 |
+
image_np = np.array(image)
|
238 |
+
|
239 |
+
# Extract the alpha channel if present
|
240 |
+
if image_np.shape[-1] == 4:
|
241 |
+
alpha = image_np[..., 3] > 0 # Create a binary mask from the alpha channel
|
242 |
+
else:
|
243 |
+
alpha = np.ones(image_np[..., 0].shape, dtype=bool) # Default to all true for RGB images
|
244 |
+
|
245 |
+
H, W = alpha.shape
|
246 |
+
# Get the bounding box of the alpha
|
247 |
+
y, x = np.where(alpha)
|
248 |
+
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
249 |
+
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
250 |
+
image_center = image_np[y0:y1, x0:x1]
|
251 |
+
|
252 |
+
# Resize the longer side to H * 0.9
|
253 |
+
H, W, _ = image_center.shape
|
254 |
+
if H > W:
|
255 |
+
W = int(W * (height * 0.9) / H)
|
256 |
+
H = int(height * 0.9)
|
257 |
+
else:
|
258 |
+
H = int(H * (width * 0.9) / W)
|
259 |
+
W = int(width * 0.9)
|
260 |
+
|
261 |
+
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
262 |
+
|
263 |
+
# Pad to H, W
|
264 |
+
start_h = (height - H) // 2
|
265 |
+
start_w = (width - W) // 2
|
266 |
+
padded_image = np.zeros((height, width, 4), dtype=np.uint8)
|
267 |
+
padded_image[start_h:start_h + H, start_w:start_w + W] = image_center
|
268 |
+
|
269 |
+
# Convert back to PIL Image
|
270 |
+
return Image.fromarray(padded_image)
|
271 |
+
|
272 |
+
|
273 |
+
def run_pipeline(
|
274 |
+
pipe,
|
275 |
+
num_views,
|
276 |
+
text,
|
277 |
+
image,
|
278 |
+
height,
|
279 |
+
width,
|
280 |
+
num_inference_steps,
|
281 |
+
guidance_scale,
|
282 |
+
seed,
|
283 |
+
remove_bg_fn=None,
|
284 |
+
reference_conditioning_scale=1.0,
|
285 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
286 |
+
lora_scale=1.0,
|
287 |
+
device="cuda",
|
288 |
+
):
|
289 |
+
# Prepare cameras
|
290 |
+
cameras = get_orthogonal_camera(
|
291 |
+
elevation_deg=[0, 0, 0, 0, 0, 0],
|
292 |
+
distance=[1.8] * num_views,
|
293 |
+
left=-0.55,
|
294 |
+
right=0.55,
|
295 |
+
bottom=-0.55,
|
296 |
+
top=0.55,
|
297 |
+
azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
|
298 |
+
device=device,
|
299 |
+
)
|
300 |
+
|
301 |
+
plucker_embeds = get_plucker_embeds_from_cameras_ortho(
|
302 |
+
cameras.c2w, [1.1] * num_views, width
|
303 |
+
)
|
304 |
+
control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)
|
305 |
+
|
306 |
+
# Prepare image
|
307 |
+
# reference_image = Image.open(image) if isinstance(image, str) else image
|
308 |
+
# if remove_bg_fn is not None:
|
309 |
+
# reference_image = remove_bg_fn(reference_image)
|
310 |
+
# reference_image = preprocess_image(reference_image, height, width)
|
311 |
+
# elif reference_image.mode == "RGBA":
|
312 |
+
# reference_image = preprocess_image(reference_image, height, width)
|
313 |
+
reference_image = Image.open(image) if isinstance(image, str) else image
|
314 |
+
logging.info(f"Initial reference_image mode: {reference_image.mode}")
|
315 |
+
|
316 |
+
if remove_bg_fn is not None:
|
317 |
+
logging.info("Using remove_bg_fn")
|
318 |
+
reference_image = remove_bg_fn(reference_image)
|
319 |
+
reference_image = preprocess_image(reference_image, height, width)
|
320 |
+
elif reference_image.mode == "RGBA":
|
321 |
+
logging.info("Image is RGBA, preprocessing directly")
|
322 |
+
reference_image = preprocess_image(reference_image, height, width)
|
323 |
+
|
324 |
+
logging.info(f"Final reference_image mode: {reference_image.mode}")
|
325 |
+
|
326 |
+
pipe_kwargs = {}
|
327 |
+
if seed != -1 and isinstance(seed, int):
|
328 |
+
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
|
329 |
+
|
330 |
+
images = pipe(
|
331 |
+
text,
|
332 |
+
height=height,
|
333 |
+
width=width,
|
334 |
+
num_inference_steps=num_inference_steps,
|
335 |
+
guidance_scale=guidance_scale,
|
336 |
+
num_images_per_prompt=num_views,
|
337 |
+
control_image=control_images,
|
338 |
+
control_conditioning_scale=1.0,
|
339 |
+
reference_image=reference_image,
|
340 |
+
reference_conditioning_scale=reference_conditioning_scale,
|
341 |
+
negative_prompt=negative_prompt,
|
342 |
+
cross_attention_kwargs={"scale": lora_scale},
|
343 |
+
**pipe_kwargs,
|
344 |
+
).images
|
345 |
+
|
346 |
+
return images, reference_image
|
347 |
+
|
348 |
+
|
349 |
+
if __name__ == "__main__":
|
350 |
+
parser = argparse.ArgumentParser()
|
351 |
+
# Models
|
352 |
+
parser.add_argument(
|
353 |
+
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
|
354 |
+
)
|
355 |
+
parser.add_argument(
|
356 |
+
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
|
357 |
+
)
|
358 |
+
parser.add_argument("--unet_model", type=str, default=None)
|
359 |
+
parser.add_argument("--scheduler", type=str, default=None)
|
360 |
+
parser.add_argument("--lora_model", type=str, default=None)
|
361 |
+
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
|
362 |
+
parser.add_argument("--num_views", type=int, default=6)
|
363 |
+
# Device
|
364 |
+
parser.add_argument("--device", type=str, default="cuda")
|
365 |
+
# Inference
|
366 |
+
parser.add_argument("--image", type=str, required=True)
|
367 |
+
parser.add_argument("--text", type=str, default="high quality")
|
368 |
+
parser.add_argument("--num_inference_steps", type=int, default=50)
|
369 |
+
parser.add_argument("--guidance_scale", type=float, default=3.0)
|
370 |
+
parser.add_argument("--seed", type=int, default=-1)
|
371 |
+
parser.add_argument("--lora_scale", type=float, default=1.0)
|
372 |
+
parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
|
373 |
+
parser.add_argument(
|
374 |
+
"--negative_prompt",
|
375 |
+
type=str,
|
376 |
+
default="watermark, ugly, deformed, noisy, blurry, low contrast",
|
377 |
+
)
|
378 |
+
parser.add_argument("--output", type=str, default="output.png")
|
379 |
+
# Extra
|
380 |
+
parser.add_argument("--remove_bg", action="store_true", help="Remove background")
|
381 |
+
args = parser.parse_args()
|
382 |
+
|
383 |
+
pipe = prepare_pipeline(
|
384 |
+
base_model=args.base_model,
|
385 |
+
vae_model=args.vae_model,
|
386 |
+
unet_model=args.unet_model,
|
387 |
+
lora_model=args.lora_model,
|
388 |
+
adapter_path=args.adapter_path,
|
389 |
+
scheduler=args.scheduler,
|
390 |
+
num_views=args.num_views,
|
391 |
+
device=args.device,
|
392 |
+
dtype=torch.float16,
|
393 |
+
)
|
394 |
+
|
395 |
+
if args.remove_bg:
|
396 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
397 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
398 |
+
)
|
399 |
+
birefnet.to(args.device)
|
400 |
+
transform_image = transforms.Compose(
|
401 |
+
[
|
402 |
+
transforms.Resize((1024, 1024)),
|
403 |
+
transforms.ToTensor(),
|
404 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
405 |
+
]
|
406 |
+
)
|
407 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
|
408 |
+
else:
|
409 |
+
remove_bg_fn = None
|
410 |
+
|
411 |
+
images, reference_image = run_pipeline(
|
412 |
+
pipe,
|
413 |
+
num_views=args.num_views,
|
414 |
+
text=args.text,
|
415 |
+
image=args.image,
|
416 |
+
height=768,
|
417 |
+
width=768,
|
418 |
+
num_inference_steps=args.num_inference_steps,
|
419 |
+
guidance_scale=args.guidance_scale,
|
420 |
+
seed=args.seed,
|
421 |
+
lora_scale=args.lora_scale,
|
422 |
+
reference_conditioning_scale=args.reference_conditioning_scale,
|
423 |
+
negative_prompt=args.negative_prompt,
|
424 |
+
device=args.device,
|
425 |
+
remove_bg_fn=remove_bg_fn,
|
426 |
+
)
|
427 |
+
make_image_grid(images, rows=1).save(args.output)
|
428 |
+
reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png")
|