|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import json |
|
import math |
|
import pathlib |
|
from typing import Dict, Optional, Sequence |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
import transformers |
|
from transformers import Trainer |
|
from transformers.trainer_pt_utils import LabelSmoother |
|
|
|
from fastchat.conversation import SeparatorStyle |
|
from fastchat.model.model_adapter import get_conversation_template |
|
|
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") |
|
trust_remote_code: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether or not to allow for custom models defined on the Hub in their own modeling files" |
|
}, |
|
) |
|
padding_side: str = field( |
|
default="right", metadata={"help": "The padding side in tokenizer"} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataArguments: |
|
data_path: str = field( |
|
default=None, metadata={"help": "Path to the training data."} |
|
) |
|
eval_data_path: str = field( |
|
default=None, metadata={"help": "Path to the evaluation data."} |
|
) |
|
lazy_preprocess: bool = False |
|
|
|
|
|
@dataclass |
|
class TrainingArguments(transformers.TrainingArguments): |
|
cache_dir: Optional[str] = field(default=None) |
|
optim: str = field(default="adamw_torch") |
|
model_max_length: int = field( |
|
default=512, |
|
metadata={ |
|
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
}, |
|
) |
|
|
|
|
|
local_rank = None |
|
|
|
|
|
def rank0_print(*args): |
|
if local_rank == 0: |
|
print(*args) |
|
|
|
|
|
def trainer_save_model_safe(trainer: transformers.Trainer): |
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp import StateDictType, FullStateDictConfig |
|
|
|
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) |
|
with FSDP.state_dict_type( |
|
trainer.model, StateDictType.FULL_STATE_DICT, save_policy |
|
): |
|
trainer.save_model() |
|
|
|
|
|
def preprocess( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
) -> Dict: |
|
conv = get_conversation_template("vicuna") |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
targets = input_ids.clone() |
|
|
|
assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO |
|
|
|
|
|
sep = conv.sep + conv.roles[1] + ": " |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
turns = conversation.split(conv.sep2) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_TOKEN_ID |
|
for i, turn in enumerate(turns): |
|
if turn == "": |
|
break |
|
turn_len = len(tokenizer(turn).input_ids) |
|
|
|
parts = turn.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 |
|
|
|
if i != 0 and not tokenizer.legacy: |
|
|
|
instruction_len -= 1 |
|
|
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID |
|
cur_len += turn_len |
|
|
|
if i != 0 and not tokenizer.legacy: |
|
|
|
cur_len -= 1 |
|
|
|
target[cur_len:] = IGNORE_TOKEN_ID |
|
|
|
if False: |
|
z = target.clone() |
|
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) |
|
rank0_print(tokenizer.decode(z)) |
|
exit() |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_TOKEN_ID |
|
rank0_print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" #turn = {len(turns) - 1}. (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
attention_mask=input_ids.ne(tokenizer.pad_token_id), |
|
) |
|
|
|
|
|
class SupervisedDataset(Dataset): |
|
"""Dataset for supervised fine-tuning.""" |
|
|
|
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): |
|
super(SupervisedDataset, self).__init__() |
|
|
|
rank0_print("Formatting inputs...") |
|
sources = [example["conversations"] for example in raw_data] |
|
data_dict = preprocess(sources, tokenizer) |
|
|
|
self.input_ids = data_dict["input_ids"] |
|
self.labels = data_dict["labels"] |
|
self.attention_mask = data_dict["attention_mask"] |
|
|
|
def __len__(self): |
|
return len(self.input_ids) |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
return dict( |
|
input_ids=self.input_ids[i], |
|
labels=self.labels[i], |
|
attention_mask=self.attention_mask[i], |
|
) |
|
|
|
|
|
class LazySupervisedDataset(Dataset): |
|
"""Dataset for supervised fine-tuning.""" |
|
|
|
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): |
|
super(LazySupervisedDataset, self).__init__() |
|
self.tokenizer = tokenizer |
|
|
|
rank0_print("Formatting inputs...Skip in lazy mode") |
|
self.tokenizer = tokenizer |
|
self.raw_data = raw_data |
|
self.cached_data_dict = {} |
|
|
|
def __len__(self): |
|
return len(self.raw_data) |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
if i in self.cached_data_dict: |
|
return self.cached_data_dict[i] |
|
|
|
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer) |
|
ret = dict( |
|
input_ids=ret["input_ids"][0], |
|
labels=ret["labels"][0], |
|
attention_mask=ret["attention_mask"][0], |
|
) |
|
self.cached_data_dict[i] = ret |
|
|
|
return ret |
|
|
|
|
|
def make_supervised_data_module( |
|
tokenizer: transformers.PreTrainedTokenizer, data_args |
|
) -> Dict: |
|
"""Make dataset and collator for supervised fine-tuning.""" |
|
dataset_cls = ( |
|
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset |
|
) |
|
rank0_print("Loading data...") |
|
|
|
train_json = json.load(open(data_args.data_path, "r")) |
|
train_dataset = dataset_cls(train_json, tokenizer=tokenizer) |
|
|
|
if data_args.eval_data_path: |
|
eval_json = json.load(open(data_args.eval_data_path, "r")) |
|
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer) |
|
else: |
|
eval_dataset = None |
|
|
|
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) |
|
|
|
|
|
def train(): |
|
global local_rank |
|
|
|
parser = transformers.HfArgumentParser( |
|
(ModelArguments, DataArguments, TrainingArguments) |
|
) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
local_rank = training_args.local_rank |
|
|
|
|
|
config = transformers.AutoConfig.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
trust_remote_code=model_args.trust_remote_code, |
|
) |
|
orig_ctx_len = getattr(config, "max_position_embeddings", None) |
|
if orig_ctx_len and training_args.model_max_length > orig_ctx_len: |
|
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len)) |
|
config.rope_scaling = {"type": "linear", "factor": scaling_factor} |
|
config.use_cache = False |
|
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=training_args.cache_dir, |
|
trust_remote_code=model_args.trust_remote_code, |
|
) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
model_max_length=training_args.model_max_length, |
|
padding_side=model_args.padding_side, |
|
use_fast=False, |
|
trust_remote_code=model_args.trust_remote_code, |
|
) |
|
|
|
if tokenizer.pad_token != tokenizer.unk_token: |
|
tokenizer.pad_token = tokenizer.unk_token |
|
|
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, tokenizer=tokenizer, args=training_args, **data_module |
|
) |
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): |
|
trainer.train(resume_from_checkpoint=True) |
|
else: |
|
trainer.train() |
|
|
|
|
|
model.config.use_cache = True |
|
trainer.save_state() |
|
if trainer.is_deepspeed_enabled: |
|
trainer.save_model() |
|
else: |
|
trainer_save_model_safe(trainer) |
|
|
|
|
|
if __name__ == "__main__": |
|
train() |
|
|