Ascol57 commited on
Commit
9afd745
·
verified ·
1 Parent(s): d96a239

Upload 18 files

Browse files
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md CHANGED
@@ -1,12 +1,141 @@
1
- ---
2
- title: LLMsearch
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.36.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Give your local LLM the ability to search the web!
2
+ This project gives local LLMs the ability to search the web by outputting a specific
3
+ command. Once the command has been found in the model output using a regular expression,
4
+ [duckduckgo-search](https://pypi.org/project/duckduckgo-search/)
5
+ is used to search the web and return a number of result pages. Finally, an
6
+ ensemble of LangChain's [Contextual compression](https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression/) and
7
+ [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25) (Or alternatively, [SPLADE](https://github.com/naver/splade))
8
+ is used to extract the relevant parts (if any) of each web page in the search results
9
+ and the results are appended to the model's output.
10
+ ![llm_websearch](https://github.com/mamei16/LLM_Web_search/assets/25900898/f9d2d83c-e3cf-4f69-91c2-e9c3fe0b7d89)
11
+
12
+
13
+ * **[Table of Contents](#table-of-contents)**
14
+ * [Installation](#installation)
15
+ * [Usage](#usage)
16
+ + [Using a custom regular expression](#using-a-custom-regular-expression)
17
+ + [Reading web pages](#reading-web-pages)
18
+ * [Search backends](#search-backends)
19
+ + [DuckDuckGo](#duckduckgo)
20
+ + [SearXNG](#searxng)
21
+ + [Search parameters](#search-parameters)
22
+ * [Keyword retrievers](#keyword-retrievers)
23
+ + [Okapi BM25](#okapi-bm25)
24
+ + [SPLADE](#splade)
25
+ * [Recommended models](#recommended-models)
26
+
27
+ ## Installation
28
+ 1. Go to the "Session" tab of the web UI and use "Install or update an extension"
29
+ to download the latest code for this extension.
30
+ 2. To install the extension's depencies you have two options:
31
+ 1. **The easy way:** Run the appropriate `update_wizard` script inside the text-generation-webui folder
32
+ and choose `Install/update extensions requirements`. This installs everything using `pip`,
33
+ which means using the unofficial `faiss-cpu` package. Therefore, it is not guaranteed to
34
+ work with your system (see [the official disclaimer](https://github.com/facebookresearch/faiss/wiki/Installing-Faiss#why-dont-you-support-installing-via-xxx-)).
35
+ 2. **The safe way:** Manually update the conda environment in which you installed the dependencies of
36
+ [oobabooga's text-generation-webui](https://github.com/oobabooga/text-generation-webui).
37
+ Open the subfolder `text-generation-webui/extensions/LLM_Web_search` in a terminal or conda shell.
38
+ If you used the one-click install method, run the command
39
+ `conda env update -p <path_to_your_environment> --file environment.yml`,
40
+ where you need to replace `<path_to_your_environment>` with the path to the
41
+ `/installer_files/env` subfolder within the text-generation-webui folder.
42
+ Otherwise, if you made your own environment,
43
+ use `conda env update -n <name_of_your_environment> --file environment.yml`
44
+ (NB: Solving the environment can take a while)
45
+ 3. Launch the Web UI with:
46
+ ```python server.py --extension LLM_Web_search```
47
+
48
+ If the installation was successful and the extension was loaded, a new tab with the
49
+ title "LLM Web Search" should be visible in the web UI.
50
+
51
+ See https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions for more
52
+ information about extensions.
53
+
54
+ ## Usage
55
+
56
+ Search queries are extracted from the model's output using a regular expression. This is made easier by prompting the model
57
+ to use a fixed search command (see `system_prompts/` for example prompts).
58
+ Currently, only a single search query per model chat message is supported.
59
+
60
+ An example workflow of using this extension could be:
61
+ 1. Load a model
62
+ 2. Load a matching instruction template
63
+ 3. Head over to the "LLM Web search" tab
64
+ 4. Load a custom system message/prompt
65
+ 5. Ensure that the query part of the command mentioned in the system message
66
+ can be matched using the current "Search command regex string"
67
+ (see "Using a custom regular expression" below)
68
+ 6. Pick a hyperparameter generation preset that works well for you.
69
+ 7. Choose "chat-instruct" or "instruct" mode and start chatting
70
+
71
+ ### Using a custom regular expression
72
+ The default regular expression is:
73
+ ```regexp
74
+ Search_web\("(.*)"\)
75
+ ```
76
+ Where `Search_web` is the search command and everything between the quotation marks
77
+ inside the parentheses will be used as the search query. Every custom regular expression must use a
78
+ [capture group](https://www.regular-expressions.info/brackets.html) to extract the search
79
+ query. I recommend https://www.debuggex.com/ to try out custom regular expressions. If a regex
80
+ fulfills the requirement above, the search query should be matched by "Group 1" in Debuggex.
81
+
82
+ Here is an example of a more flexible, but more complex, regex that works for several
83
+ different models:
84
+ ```regexp
85
+ [Ss]earch_web\((?:["'])(.*)(?:["'])\)
86
+ ```
87
+ ### Reading web pages
88
+ Experimental support exists for extracting the full text content from a webpage. The default regex to use this
89
+ functionality is:
90
+ ```regexp
91
+ Open_url\("(.*)"\)
92
+ ```
93
+ **Note**: The full content of a web page is likely to exceed the maximum context length of your average local LLM.
94
+ ## Search backends
95
+
96
+ ### DuckDuckGo
97
+ This is the default web search backend.
98
+
99
+ ### SearXNG
100
+
101
+ Rudimentary support exists for SearXNG. To use a local or remote
102
+ SearXNG instance instead of DuckDuckGo, simply paste the URL into the
103
+ "SearXNG URL" text field of the "LLM Web Search" settings tab. The instance must support
104
+ returning results in JSON format.
105
+
106
+ #### Search parameters
107
+ To modify the categories, engines, languages etc. that should be used for a
108
+ specific query, it must follow the
109
+ [SearXNG search syntax](https://docs.searxng.org/user/search-syntax.html). Currently,
110
+ automatic redirect and Special Queries are not supported.
111
+
112
+
113
+ ## Keyword retrievers
114
+ ### Okapi BM25
115
+ This extension comes out of the box with
116
+ [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25) enabled, which is widely used and very popuplar
117
+ for keyword based document retrieval. It runs on the CPU and,
118
+ for the purpose of this extension, it is fast.
119
+ ### SPLADE
120
+ If you don't run the extension in "CPU only" mode and have some VRAM to spare,
121
+ you can also select [SPLADE](https://github.com/naver/splade) in the "Advanced settings" section
122
+ as an alternative. It has been [shown](https://arxiv.org/pdf/2207.03834.pdf) to outperform BM25 in multiple benchmarks
123
+ and uses a technique called "query expansion" to add additional contextually relevant words
124
+ to the original query. However, it is slower than BM25. You can read more about it [here](https://www.pinecone.io/learn/splade/).
125
+ To use SPLADE, you have to install the additional dependency [qdrant-client](https://github.com/qdrant/qdrant-client).
126
+ Simply activate the conda environment of the main web UI and run
127
+ `pip install qdrant-client`.
128
+ To improve performance, documents are embedded in batches and in parallel. Increasing the
129
+ "SPLADE batch size" parameter setting improves performance up to a certain point,
130
+ but VRAM usage ramps up quickly with increasing batch size. A batch size of 8 appears
131
+ to be a good trade-off, but the default value is 2 to avoid running out of memory on smaller
132
+ GPUs.
133
+
134
+ ## Recommended models
135
+ If you (like me) have ≤ 12 GB VRAM, I recommend using
136
+ [Llama-3-8B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
137
+ You can find a matching instruction template in the extension's `instruction_templates`
138
+ folder. Simply copy it to the main web UI's `instruction-templates` folder.
139
+ **Note:** Several existing GGUF versions have a stop token issue, which can be solved by [editing the file's
140
+ metadata](https://www.reddit.com/r/LocalLLaMA/comments/1c7dkxh/tutorial_how_to_make_llama3instruct_ggufs_less/). A GGUF version where this issue has already been fixed can be found
141
+ [here](https://huggingface.co/AI-Engine/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct.Q5_k_m_with_temp_stop_token_fix.gguf).
environment.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - defaults
3
+ - conda-forge
4
+ - pytorch
5
+ dependencies:
6
+ - pip
7
+ - faiss-cpu=1.8.0
8
+ - pip:
9
+ - duckduckgo_search==6.1.0
10
+ - beautifulsoup4==4.12.3
11
+ - langchain==0.2.1
12
+ - langchain-community==0.2.1
13
+ - unstructured==0.14.2
14
+ - rank_bm25==0.2.2
15
+ - sentence-transformers==2.7.0
instruction_templates/Llama-3.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ instruction_template: |-
2
+ {%- set ns = namespace(found=false) -%}
3
+ {%- for message in messages -%}
4
+ {%- if message['role'] == 'system' -%}
5
+ {%- set ns.found = true -%}
6
+ {%- endif -%}
7
+ {%- endfor -%}
8
+ {%- for message in messages %}
9
+ {% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}
10
+ {% if loop.index0 == 0 %}
11
+ {% set content = '<|begin_of_text|>' + content %}
12
+ {% endif %}
13
+ {{- content -}}
14
+ {%- endfor -%}
15
+ {%- if add_generation_prompt -%}
16
+ {{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' -}}
17
+ {%- endif -%}
instruction_templates/OpenChat-Correct.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ instruction_template: |-
2
+ {%- set ns = namespace(found=false) -%}
3
+ {%- for message in messages -%}
4
+ {%- if message['role'] == 'system' -%}
5
+ {%- set ns.found = true -%}
6
+ {%- endif -%}
7
+ {%- endfor -%}
8
+ {%- if not ns.found -%}
9
+ {{- '' + '' + '' -}}
10
+ {%- endif %}
11
+ {%- for message in messages %}
12
+ {%- if message['role'] == 'system' -%}
13
+ {{- '' + message['content'] + '' -}}
14
+ {%- else -%}
15
+ {%- if message['role'] == 'user' -%}
16
+ {{-'GPT4 Correct User: ' + message['content'] + '<|end_of_turn|>'-}}
17
+ {%- else -%}
18
+ {{-'GPT4 Correct Assistant: ' + message['content'] + '<|end_of_turn|>' -}}
19
+ {%- endif -%}
20
+ {%- endif -%}
21
+ {%- endfor -%}
22
+ {%- if add_generation_prompt -%}
23
+ {{-'GPT4 Correct Assistant:'-}}
24
+ {%- endif -%}
instruction_templates/SOLAR-10.7B.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ instruction_template: |-
2
+ {%- set ns = namespace(found=false) -%}
3
+ {%- for message in messages -%}
4
+ {%- if message['role'] == 'system' -%}
5
+ {%- set ns.found = true -%}
6
+ {%- endif -%}
7
+ {%- endfor -%}
8
+ {%- if not ns.found -%}
9
+ {{- '' + '' + '' -}}
10
+ {%- endif %}
11
+ {%- for message in messages %}
12
+ {%- if message['role'] == 'system' -%}
13
+ {{- '' + message['content'] + '' -}}
14
+ {%- else -%}
15
+ {%- if message['role'] == 'user' -%}
16
+ {{-'### User: ' + message['content'] + '\n\n'-}}
17
+ {%- else -%}
18
+ {{-'### Assistant: ' + message['content'] + '\n\n' -}}
19
+ {%- endif -%}
20
+ {%- endif -%}
21
+ {%- endfor -%}
22
+ {%- if add_generation_prompt -%}
23
+ {{-'### Assistant:'-}}
24
+ {%- endif -%}
langchain_websearch.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import asyncio
3
+ import warnings
4
+ import logging
5
+
6
+ import aiohttp
7
+ import requests
8
+ from bs4 import BeautifulSoup
9
+ from langchain.retrievers.document_compressors import DocumentCompressorPipeline
10
+ from langchain.retrievers.ensemble import EnsembleRetriever
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain.retrievers.document_compressors.embeddings_filter import EmbeddingsFilter
13
+ from langchain.retrievers import ContextualCompressionRetriever
14
+ from langchain.schema import Document
15
+ from langchain_community.embeddings import HuggingFaceEmbeddings
16
+ from langchain_community.vectorstores import FAISS
17
+ from langchain_community.document_transformers import EmbeddingsRedundantFilter
18
+ from langchain_community.retrievers import BM25Retriever
19
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
20
+ import optimum.bettertransformer.transformation
21
+ try:
22
+ from qdrant_client import QdrantClient, models
23
+ except ImportError:
24
+ qrant_client = None
25
+
26
+ from .qdrant_retriever import MyQdrantSparseVectorRetriever
27
+ from .semantic_chunker import BoundedSemanticChunker
28
+
29
+
30
+ class LangchainCompressor:
31
+
32
+ def __init__(self, device="cuda", num_results: int = 5, similarity_threshold: float = 0.5, chunk_size: int = 500,
33
+ ensemble_weighting: float = 0.5, splade_batch_size: int = 2, keyword_retriever: str = "bm25",
34
+ model_cache_dir: str = None, chunking_method: str = "character-based",
35
+ chunker_breakpoint_threshold_amount: int = 10):
36
+ self.device = device
37
+ self.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2", model_kwargs={"device": device},
38
+ cache_folder=model_cache_dir)
39
+ if keyword_retriever == "splade":
40
+ if "QdrantClient" not in globals():
41
+ raise ImportError("Package qrant_client is missing. Please install it using 'pip install qdrant-client")
42
+ self.splade_doc_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
43
+ cache_dir=model_cache_dir)
44
+ self.splade_doc_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
45
+ cache_dir=model_cache_dir).to(self.device)
46
+ self.splade_query_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-query",
47
+ cache_dir=model_cache_dir)
48
+ self.splade_query_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-query",
49
+ cache_dir=model_cache_dir).to(self.device)
50
+ optimum_logger = optimum.bettertransformer.transformation.logger
51
+ original_log_level = optimum_logger.level
52
+ # Set the level to 'ERROR' to ignore "The BetterTransformer padding during training warning"
53
+ optimum_logger.setLevel(logging.ERROR)
54
+ self.splade_doc_model.to_bettertransformer()
55
+ self.splade_query_model.to_bettertransformer()
56
+ optimum_logger.setLevel(original_log_level)
57
+ self.splade_batch_size = splade_batch_size
58
+
59
+ self.spaces_regex = re.compile(r" {3,}")
60
+ self.num_results = num_results
61
+ self.similarity_threshold = similarity_threshold
62
+ self.chunking_method = chunking_method
63
+ self.chunk_size = chunk_size
64
+ self.chunker_breakpoint_threshold_amount = chunker_breakpoint_threshold_amount
65
+ self.ensemble_weighting = ensemble_weighting
66
+ self.keyword_retriever = keyword_retriever
67
+
68
+ def preprocess_text(self, text: str) -> str:
69
+ text = text.replace("\n", " \n")
70
+ text = self.spaces_regex.sub(" ", text)
71
+ text = text.strip()
72
+ return text
73
+
74
+ def retrieve_documents(self, query: str, url_list: list[str]) -> list[Document]:
75
+ yield "Downloading webpages..."
76
+ html_url_tupls = zip(asyncio.run(async_fetch_urls(url_list)), url_list)
77
+ html_url_tupls = [(content, url) for content, url in html_url_tupls if content is not None]
78
+ if not html_url_tupls:
79
+ return []
80
+
81
+ documents = [html_to_plaintext_doc(html, url) for html, url in html_url_tupls]
82
+ if self.chunking_method == "semantic":
83
+ text_splitter = BoundedSemanticChunker(self.embeddings, breakpoint_threshold_type="percentile",
84
+ breakpoint_threshold_amount=self.chunker_breakpoint_threshold_amount,
85
+ max_chunk_size=self.chunk_size)
86
+ else:
87
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=10,
88
+ separators=["\n\n", "\n", ".", ", ", " ", ""])
89
+ yield "Chunking page texts..."
90
+ split_docs = text_splitter.split_documents(documents)
91
+ yield "Retrieving relevant results..."
92
+ # filtered_docs = pipeline_compressor.compress_documents(documents, query)
93
+ faiss_retriever = FAISS.from_documents(split_docs, self.embeddings).as_retriever(
94
+ search_kwargs={"k": self.num_results}
95
+ )
96
+
97
+ # The sparse keyword retriever is good at finding relevant documents based on keywords,
98
+ # while the dense retriever is good at finding relevant documents based on semantic similarity.
99
+ if self.keyword_retriever == "bm25":
100
+ keyword_retriever = BM25Retriever.from_documents(split_docs, preprocess_func=self.preprocess_text)
101
+ keyword_retriever.k = self.num_results
102
+ elif self.keyword_retriever == "splade":
103
+ client = QdrantClient(location=":memory:")
104
+ collection_name = "sparse_collection"
105
+ vector_name = "sparse_vector"
106
+
107
+ client.create_collection(
108
+ collection_name,
109
+ vectors_config={},
110
+ sparse_vectors_config={
111
+ vector_name: models.SparseVectorParams(
112
+ index=models.SparseIndexParams(
113
+ on_disk=False,
114
+ )
115
+ )
116
+ },
117
+ )
118
+
119
+ keyword_retriever = MyQdrantSparseVectorRetriever(
120
+ splade_doc_tokenizer=self.splade_doc_tokenizer,
121
+ splade_doc_model=self.splade_doc_model,
122
+ splade_query_tokenizer=self.splade_query_tokenizer,
123
+ splade_query_model=self.splade_query_model,
124
+ device=self.device,
125
+ client=client,
126
+ collection_name=collection_name,
127
+ sparse_vector_name=vector_name,
128
+ sparse_encoder=None,
129
+ batch_size=self.splade_batch_size,
130
+ k=self.num_results
131
+ )
132
+ keyword_retriever.add_documents(split_docs)
133
+ else:
134
+ raise ValueError("self.keyword_retriever must be one of ('bm25', 'splade')")
135
+
136
+ redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings)
137
+ embeddings_filter = EmbeddingsFilter(embeddings=self.embeddings, k=None,
138
+ similarity_threshold=self.similarity_threshold)
139
+ pipeline_compressor = DocumentCompressorPipeline(
140
+ transformers=[redundant_filter, embeddings_filter]
141
+ )
142
+
143
+ compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor,
144
+ base_retriever=faiss_retriever)
145
+
146
+ ensemble_retriever = EnsembleRetriever(
147
+ retrievers=[compression_retriever, keyword_retriever],
148
+ weights=[self.ensemble_weighting, 1 - self.ensemble_weighting]
149
+ )
150
+ compressed_docs = ensemble_retriever.invoke(query)
151
+
152
+ # Ensemble may return more than "num_results" results, so cut off excess ones
153
+ return compressed_docs[:self.num_results]
154
+
155
+
156
+ async def async_download_html(url, headers):
157
+ async with aiohttp.ClientSession(headers=headers, timeout=aiohttp.ClientTimeout(10)) as session:
158
+ try:
159
+ resp = await session.get(url)
160
+ return await resp.text()
161
+ except UnicodeDecodeError:
162
+ print(
163
+ f"LLM_Web_search | {url} generated an exception: Expected content type text/html. Got {resp.headers['Content-Type']}.")
164
+ except TimeoutError as exc:
165
+ print('LLM_Web_search | %r did not load in time' % url)
166
+ except Exception as exc:
167
+ print('LLM_Web_search | %r generated an exception: %s' % (url, exc))
168
+ return None
169
+
170
+
171
+ async def async_fetch_urls(urls):
172
+ headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
173
+ "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
174
+ "Accept-Language": "en-US,en;q=0.5"}
175
+ webpages = await asyncio.gather(*[(async_download_html(url, headers)) for url in urls])
176
+ return webpages
177
+
178
+
179
+ def docs_to_pretty_str(docs) -> str:
180
+ ret_str = ""
181
+ for i, doc in enumerate(docs):
182
+ ret_str += f"Result {i+1}:\n"
183
+ ret_str += f"{doc.page_content}\n"
184
+ ret_str += f"Source URL: {doc.metadata['source']}\n\n"
185
+ return ret_str
186
+
187
+
188
+ def download_html(url: str) -> bytes:
189
+ headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
190
+ "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
191
+ "Accept-Language": "en-US,en;q=0.5"}
192
+
193
+ response = requests.get(url, headers=headers, verify=True, timeout=8)
194
+ response.raise_for_status()
195
+
196
+ content_type = response.headers.get("Content-Type", "")
197
+ if not content_type.startswith("text/html"):
198
+ raise ValueError(f"Expected content type text/html. Got {content_type}.")
199
+ return response.content
200
+
201
+
202
+ def html_to_plaintext_doc(html_text: str or bytes, url: str) -> Document:
203
+ with warnings.catch_warnings(action="ignore"):
204
+ soup = BeautifulSoup(html_text, features="lxml")
205
+ for script in soup(["script", "style"]):
206
+ script.extract()
207
+
208
+ strings = '\n'.join([s.strip() for s in soup.stripped_strings])
209
+ webpage_document = Document(page_content=strings, metadata={"source": url})
210
+ return webpage_document
llm_web_search.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import urllib
2
+
3
+ import requests
4
+ from requests.exceptions import JSONDecodeError
5
+ from duckduckgo_search import DDGS
6
+ from bs4 import BeautifulSoup
7
+ from langchain.schema import Document
8
+
9
+ from .langchain_websearch import docs_to_pretty_str, LangchainCompressor
10
+
11
+
12
+ class Generator:
13
+ """Allows a generator method to return a final value after finishing
14
+ the generation. Credit: https://stackoverflow.com/a/34073559"""
15
+ def __init__(self, gen):
16
+ self.gen = gen
17
+
18
+ def __iter__(self):
19
+ self.value = yield from self.gen
20
+ return self.value
21
+
22
+
23
+ def dict_list_to_pretty_str(data: list[dict]) -> str:
24
+ ret_str = ""
25
+ if isinstance(data, dict):
26
+ data = [data]
27
+ if isinstance(data, list):
28
+ for i, d in enumerate(data):
29
+ ret_str += f"Result {i+1}\n"
30
+ ret_str += f"Title: {d['title']}\n"
31
+ ret_str += f"{d['body']}\n"
32
+ ret_str += f"Source URL: {d['href']}\n"
33
+ return ret_str
34
+ else:
35
+ raise ValueError("Input must be dict or list[dict]")
36
+
37
+
38
+ def search_duckduckgo(query: str, max_results: int, instant_answers: bool = True,
39
+ regular_search_queries: bool = True, get_website_content: bool = False) -> list[dict]:
40
+ query = query.strip("\"'")
41
+ with DDGS() as ddgs:
42
+ if instant_answers:
43
+ answer_list = ddgs.answers(query)
44
+ else:
45
+ answer_list = None
46
+ if answer_list:
47
+ answer_dict = answer_list[0]
48
+ answer_dict["title"] = query
49
+ answer_dict["body"] = answer_dict["text"]
50
+ answer_dict["href"] = answer_dict["url"]
51
+ answer_dict.pop('icon', None)
52
+ answer_dict.pop('topic', None)
53
+ answer_dict.pop('text', None)
54
+ answer_dict.pop('url', None)
55
+ return [answer_dict]
56
+ elif regular_search_queries:
57
+ results = []
58
+ for result in ddgs.text(query, region='wt-wt', safesearch='moderate',
59
+ timelimit=None, max_results=max_results):
60
+ if get_website_content:
61
+ result["body"] = get_webpage_content(result["href"])
62
+ results.append(result)
63
+ return results
64
+ else:
65
+ raise ValueError("One of ('instant_answers', 'regular_search_queries') must be True")
66
+
67
+
68
+ def langchain_search_duckduckgo(query: str, langchain_compressor: LangchainCompressor, max_results: int,
69
+ instant_answers: bool):
70
+ documents = []
71
+ query = query.strip("\"'")
72
+ yield f'Getting results from DuckDuckGo...'
73
+ with DDGS() as ddgs:
74
+ if instant_answers:
75
+ answer_list = ddgs.answers(query)
76
+ if answer_list:
77
+ if max_results > 1:
78
+ max_results -= 1 # We already have 1 result now
79
+ answer_dict = answer_list[0]
80
+ instant_answer_doc = Document(page_content=answer_dict["text"],
81
+ metadata={"source": answer_dict["url"]})
82
+ documents.append(instant_answer_doc)
83
+
84
+ results = []
85
+ result_urls = []
86
+ for result in ddgs.text(query, region='wt-wt', safesearch='moderate', timelimit=None,
87
+ max_results=langchain_compressor.num_results):
88
+ results.append(result)
89
+ result_urls.append(result["href"])
90
+ retrieval_gen = Generator(langchain_compressor.retrieve_documents(query, result_urls))
91
+ for status_message in retrieval_gen:
92
+ yield status_message
93
+ documents.extend(retrieval_gen.value)
94
+ if not documents: # Fall back to old simple search rather than returning nothing
95
+ print("LLM_Web_search | Could not find any page content "
96
+ "similar enough to be extracted, using basic search fallback...")
97
+ return dict_list_to_pretty_str(results[:max_results])
98
+ return docs_to_pretty_str(documents[:max_results])
99
+
100
+
101
+ def langchain_search_searxng(query: str, url: str, langchain_compressor: LangchainCompressor, max_results: int):
102
+ yield f'Getting results from Searxng...'
103
+ headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
104
+ "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
105
+ "Accept-Language": "en-US,en;q=0.5"}
106
+ result_urls = []
107
+ request_str = f"/search?q={urllib.parse.quote(query)}&format=json&pageno="
108
+ pageno = 1
109
+ while len(result_urls) < langchain_compressor.num_results:
110
+ response = requests.get(url + request_str + str(pageno), headers=headers)
111
+ if not result_urls: # no results to lose by raising an exception here
112
+ response.raise_for_status()
113
+ try:
114
+ response_dict = response.json()
115
+ except JSONDecodeError:
116
+ raise ValueError("JSONDecodeError: Please ensure that the SearXNG instance can return data in JSON format")
117
+ result_dicts = response_dict["results"]
118
+ if not result_dicts:
119
+ break
120
+ for result in result_dicts:
121
+ result_urls.append(result["url"])
122
+ pageno += 1
123
+ retrieval_gen = Generator(langchain_compressor.retrieve_documents(query, result_urls))
124
+ for status_message in retrieval_gen:
125
+ yield status_message
126
+ documents = retrieval_gen.value
127
+ return docs_to_pretty_str(documents[:max_results])
128
+
129
+
130
+ def get_webpage_content(url: str) -> str:
131
+ headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
132
+ "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
133
+ "Accept-Language": "en-US,en;q=0.5"}
134
+ if not url.startswith("https://"):
135
+ try:
136
+ response = requests.get(f"https://{url}", headers=headers)
137
+ except:
138
+ response = requests.get(url, headers=headers)
139
+ else:
140
+ response = requests.get(url, headers=headers)
141
+
142
+ soup = BeautifulSoup(response.content, features="lxml")
143
+ for script in soup(["script", "style"]):
144
+ script.extract()
145
+
146
+ strings = soup.stripped_strings
147
+ return '\n'.join([s.strip() for s in strings])
qdrant_retriever.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Iterable,
4
+ List,
5
+ Optional,
6
+ Tuple,
7
+ cast,
8
+ Generator
9
+ )
10
+
11
+ import torch
12
+ from langchain_community.retrievers import QdrantSparseVectorRetriever
13
+ from langchain_community.vectorstores.qdrant import Qdrant
14
+ from langchain_core.pydantic_v1 import Field
15
+ from langchain_core.callbacks import CallbackManagerForRetrieverRun
16
+ from langchain.schema import Document
17
+ try:
18
+ from qdrant_client import QdrantClient, models
19
+ except ImportError:
20
+ pass
21
+
22
+
23
+ def batchify(_list: List, batch_size: int) -> Generator[List, None, None]:
24
+ for i in range(0, len(_list), batch_size):
25
+ yield _list[i:i + batch_size]
26
+
27
+
28
+ class MyQdrantSparseVectorRetriever(QdrantSparseVectorRetriever):
29
+ splade_doc_tokenizer: Any = Field(repr=False)
30
+ splade_doc_model: Any = Field(repr=False)
31
+ splade_query_tokenizer: Any = Field(repr=False)
32
+ splade_query_model: Any = Field(repr=False)
33
+ device: Any = Field(repr=False)
34
+ batch_size: int = Field(repr=False)
35
+ sparse_encoder: Any or None = Field(repr=False)
36
+
37
+ class Config:
38
+ """Configuration for this pydantic object."""
39
+ arbitrary_types_allowed = True
40
+
41
+ def compute_document_vectors(self, texts: List[str], batch_size: int) -> Tuple[List[List[int]], List[List[float]]]:
42
+ indices = []
43
+ values = []
44
+ for text_batch in batchify(texts, batch_size):
45
+ with torch.no_grad():
46
+ tokens = self.splade_doc_tokenizer(text_batch, truncation=True, padding=True,
47
+ return_tensors="pt").to(self.device)
48
+ output = self.splade_doc_model(**tokens)
49
+ logits, attention_mask = output.logits, tokens.attention_mask
50
+ relu_log = torch.log(1 + torch.relu(logits))
51
+ weighted_log = relu_log * attention_mask.unsqueeze(-1)
52
+ tvecs, _ = torch.max(weighted_log, dim=1)
53
+
54
+ # extract all non-zero values and their indices from the sparse vectors
55
+ for batch in tvecs.cpu():
56
+ indices.append(batch.nonzero(as_tuple=True)[0].numpy())
57
+ values.append(batch[indices[-1]].numpy())
58
+
59
+ return indices, values
60
+
61
+ def compute_query_vector(self, text: str):
62
+ """
63
+ Computes a vector from logits and attention mask using ReLU, log, and max operations.
64
+ """
65
+ with torch.no_grad():
66
+ tokens = self.splade_query_tokenizer(text, return_tensors="pt").to(self.device)
67
+ output = self.splade_query_model(**tokens)
68
+ logits, attention_mask = output.logits, tokens.attention_mask
69
+ relu_log = torch.log(1 + torch.relu(logits))
70
+ weighted_log = relu_log * attention_mask.unsqueeze(-1)
71
+ max_val, _ = torch.max(weighted_log, dim=1)
72
+ query_vec = max_val.squeeze().cpu()
73
+
74
+ query_indices = query_vec.nonzero().numpy().flatten()
75
+ query_values = query_vec.detach().numpy()[query_indices]
76
+
77
+ return query_indices, query_values
78
+
79
+ def add_texts(
80
+ self,
81
+ texts: Iterable[str],
82
+ metadatas: Optional[List[dict]] = None,
83
+ **kwargs: Any,
84
+ ):
85
+ client = cast(QdrantClient, self.client)
86
+
87
+ indices, values = self.compute_document_vectors(texts, self.batch_size)
88
+
89
+ points = [
90
+ models.PointStruct(
91
+ id=i + 1,
92
+ vector={
93
+ self.sparse_vector_name: models.SparseVector(
94
+ indices=indices[i],
95
+ values=values[i],
96
+ )
97
+ },
98
+ payload={
99
+ self.content_payload_key: texts[i],
100
+ self.metadata_payload_key: metadatas[i] if metadatas else None,
101
+ },
102
+ )
103
+ for i in range(len(texts))
104
+ ]
105
+ client.upsert(self.collection_name, points=points, **kwargs)
106
+ if self.device == "cuda":
107
+ torch.cuda.empty_cache()
108
+
109
+ def _get_relevant_documents(self, query: str, *, run_manager: CallbackManagerForRetrieverRun) -> List[Document]:
110
+ client = cast(QdrantClient, self.client)
111
+ query_indices, query_values = self.compute_query_vector(query)
112
+
113
+ results = client.search(
114
+ self.collection_name,
115
+ query_filter=self.filter,
116
+ query_vector=models.NamedSparseVector(
117
+ name=self.sparse_vector_name,
118
+ vector=models.SparseVector(
119
+ indices=query_indices,
120
+ values=query_values,
121
+ ),
122
+ ),
123
+ limit=self.k,
124
+ with_vectors=False,
125
+ **self.search_options,
126
+ )
127
+
128
+ return [
129
+ Qdrant._document_from_scored_point(
130
+ point,
131
+ self.collection_name,
132
+ self.content_payload_key,
133
+ self.metadata_payload_key,
134
+ )
135
+ for point in results
136
+ ]
requirements.txt CHANGED
@@ -1 +1,8 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
 
 
1
+ faiss-cpu==1.8.0
2
+ duckduckgo_search==6.1.0
3
+ beautifulsoup4==4.12.3
4
+ langchain==0.2.1
5
+ langchain-community==0.2.1
6
+ unstructured==0.14.2
7
+ rank_bm25==0.2.2
8
+ sentence-transformers==2.7.0
script.js ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ var generate_button = document.getElementById("Generate");
2
+ generate_button.insertAdjacentHTML("afterend", '<div style="position:relative;"> <label style="color:#8b8b8b;white-space:nowrap;position:absolute;top:8px;right:0px;"><input type="checkbox" id="force-search" name="accept"> Force web search </label> </div>');
3
+ generate_button.style.setProperty("position", "relative");
4
+ generate_button.style.setProperty("top", "15px");
5
+ generate_button.style.setProperty("margin-left", "-10px");
6
+
7
+ var stop_button = document.getElementById("stop");
8
+ stop_button.style.setProperty("position", "relative");
9
+ stop_button.style.setProperty("top", "15px");
10
+ stop_button.style.setProperty("margin-left", "-10px");
11
+
12
+ var checkbox = document.getElementById("force-search");
13
+ var gradio_force_search_checkbox = document.getElementById("Force-search-checkbox").children[1].firstChild;
14
+ checkbox.addEventListener('change', function() {
15
+ if (this.checked) {
16
+ if (!gradio_force_search_checkbox.checked) {
17
+ gradio_force_search_checkbox.click();
18
+ }
19
+ } else {
20
+ if (gradio_force_search_checkbox.checked) {
21
+ gradio_force_search_checkbox.click();
22
+ }
23
+ }
24
+ });
script.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import re
3
+ import json
4
+ import os
5
+ from datetime import datetime
6
+
7
+ import gradio as gr
8
+ import torch
9
+
10
+ import modules.shared as shared
11
+ from modules import chat, ui as ui_module
12
+ from modules.utils import gradio
13
+ from modules.text_generation import generate_reply_HF, generate_reply_custom
14
+ from .llm_web_search import get_webpage_content, langchain_search_duckduckgo, langchain_search_searxng, Generator
15
+ from .langchain_websearch import LangchainCompressor
16
+
17
+
18
+ params = {
19
+ "display_name": "LLM Web Search",
20
+ "is_tab": True,
21
+ "enable": True,
22
+ "search results per query": 5,
23
+ "langchain similarity score threshold": 0.5,
24
+ "instant answers": True,
25
+ "regular search results": True,
26
+ "search command regex": "",
27
+ "default search command regex": r"Search_web\(\"(.*)\"\)",
28
+ "open url command regex": "",
29
+ "default open url command regex": r"Open_url\(\"(.*)\"\)",
30
+ "display search results in chat": True,
31
+ "display extracted URL content in chat": True,
32
+ "searxng url": "",
33
+ "cpu only": True,
34
+ "chunk size": 500,
35
+ "duckduckgo results per query": 10,
36
+ "append current datetime": False,
37
+ "default system prompt filename": None,
38
+ "force search prefix": "Search_web",
39
+ "ensemble weighting": 0.5,
40
+ "keyword retriever": "bm25",
41
+ "splade batch size": 2,
42
+ "chunking method": "character-based",
43
+ "chunker breakpoint_threshold_amount": 30
44
+ }
45
+ custom_system_message_filename = None
46
+ extension_path = os.path.dirname(os.path.abspath(__file__))
47
+ langchain_compressor = None
48
+ update_history = None
49
+ force_search = False
50
+
51
+
52
+ def setup():
53
+ """
54
+ Is executed when the extension gets imported.
55
+ :return:
56
+ """
57
+ global params
58
+ os.environ["TOKENIZERS_PARALLELISM"] = "true"
59
+ os.environ["QDRANT__TELEMETRY_DISABLED"] = "true"
60
+
61
+ try:
62
+ with open(os.path.join(extension_path, "settings.json"), "r") as f:
63
+ saved_params = json.load(f)
64
+ params.update(saved_params)
65
+ save_settings() # add keys of newly added feature to settings.json
66
+ except FileNotFoundError:
67
+ save_settings()
68
+
69
+ if not os.path.exists(os.path.join(extension_path, "system_prompts")):
70
+ os.makedirs(os.path.join(extension_path, "system_prompts"))
71
+
72
+ toggle_extension(params["enable"])
73
+
74
+
75
+ def save_settings():
76
+ global params
77
+ with open(os.path.join(extension_path, "settings.json"), "w") as f:
78
+ json.dump(params, f, indent=4)
79
+ current_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
80
+ return gr.HTML(f'<span style="color:lawngreen"> Settings were saved at {current_datetime}</span>',
81
+ visible=True)
82
+
83
+
84
+ def toggle_extension(_enable: bool):
85
+ global langchain_compressor, custom_system_message_filename
86
+ if _enable:
87
+ langchain_compressor = LangchainCompressor(device="cpu" if params["cpu only"] else "cuda",
88
+ keyword_retriever=params["keyword retriever"],
89
+ model_cache_dir=os.path.join(extension_path, "hf_models"))
90
+ compressor_model = langchain_compressor.embeddings.client
91
+ compressor_model.to(compressor_model._target_device)
92
+ custom_system_message_filename = params.get("default system prompt filename")
93
+ else:
94
+ if not params["cpu only"] and 'langchain_compressor' in globals(): # free some VRAM
95
+ model_attrs = ["embeddings", "splade_doc_model", "splade_query_model"]
96
+ for model_attr in model_attrs:
97
+ if hasattr(langchain_compressor, model_attr):
98
+ model = getattr(langchain_compressor, model_attr)
99
+ if hasattr(model, "client"):
100
+ model.client.to("cpu")
101
+ del model.client
102
+ else:
103
+ if hasattr(model, "to"):
104
+ model.to("cpu")
105
+ del model
106
+ torch.cuda.empty_cache()
107
+ params.update({"enable": _enable})
108
+ return _enable
109
+
110
+
111
+ def get_available_system_prompts():
112
+ try:
113
+ return ["None"] + sorted(os.listdir(os.path.join(extension_path, "system_prompts")))
114
+ except FileNotFoundError:
115
+ return ["None"]
116
+
117
+
118
+ def load_system_prompt(filename: str or None):
119
+ global custom_system_message_filename
120
+ if not filename:
121
+ return
122
+ if filename == "None" or filename == "Select custom system message to load...":
123
+ custom_system_message_filename = None
124
+ return ""
125
+ with open(os.path.join(extension_path, "system_prompts", filename), "r") as f:
126
+ prompt_str = f.read()
127
+
128
+ if params["append current datetime"]:
129
+ prompt_str += f"\nDate and time of conversation: {datetime.now().strftime('%A %d %B %Y %H:%M')}"
130
+
131
+ shared.settings['custom_system_message'] = prompt_str
132
+ custom_system_message_filename = filename
133
+ return prompt_str
134
+
135
+
136
+ def save_system_prompt(filename, prompt):
137
+ if not filename:
138
+ return
139
+
140
+ with open(os.path.join(extension_path, "system_prompts", filename), "w") as f:
141
+ f.write(prompt)
142
+
143
+ return gr.HTML(f'<span style="color:lawngreen"> Saved successfully</span>',
144
+ visible=True)
145
+
146
+
147
+ def check_file_exists(filename):
148
+ if filename == "":
149
+ return gr.HTML("", visible=False)
150
+ if os.path.exists(os.path.join(extension_path, "system_prompts", filename)):
151
+ return gr.HTML(f'<span style="color:orange"> Warning: Filename already exists</span>', visible=True)
152
+ return gr.HTML("", visible=False)
153
+
154
+
155
+ def timeout_save_message():
156
+ time.sleep(2)
157
+ return gr.HTML("", visible=False)
158
+
159
+
160
+ def deactivate_system_prompt():
161
+ shared.settings['custom_system_message'] = None
162
+ return "None"
163
+
164
+
165
+ def toggle_forced_search(value):
166
+ global force_search
167
+ force_search = value
168
+
169
+
170
+ def ui():
171
+ """
172
+ Creates custom gradio elements when the UI is launched.
173
+ :return:
174
+ """
175
+ # Inject custom system message into the main textbox if a default one is set
176
+ shared.gradio['custom_system_message'].value = load_system_prompt(custom_system_message_filename)
177
+
178
+ def update_result_type_setting(choice: str):
179
+ if choice == "Instant answers":
180
+ params.update({"instant answers": True})
181
+ params.update({"regular search results": False})
182
+ elif choice == "Regular results":
183
+ params.update({"instant answers": False})
184
+ params.update({"regular search results": True})
185
+ elif choice == "Regular results and instant answers":
186
+ params.update({"instant answers": True})
187
+ params.update({"regular search results": True})
188
+
189
+ def update_regex_setting(input_str: str, setting_key: str, error_html_element: gr.component):
190
+ if input_str == "":
191
+ params.update({setting_key: params[f"default {setting_key}"]})
192
+ return {error_html_element: gr.HTML("", visible=False)}
193
+ try:
194
+ compiled = re.compile(input_str)
195
+ if compiled.groups > 1:
196
+ raise re.error(f"Only 1 capturing group allowed in regex, but there are {compiled.groups}.")
197
+ params.update({setting_key: input_str})
198
+ return {error_html_element: gr.HTML("", visible=False)}
199
+ except re.error as e:
200
+ return {error_html_element: gr.HTML(f'<span style="color:red"> Invalid regex. {str(e).capitalize()}</span>',
201
+ visible=True)}
202
+
203
+ def update_default_custom_system_message(check: bool):
204
+ if check:
205
+ params.update({"default system prompt filename": custom_system_message_filename})
206
+ else:
207
+ params.update({"default system prompt filename": None})
208
+
209
+ with gr.Row():
210
+ enable = gr.Checkbox(value=lambda: params['enable'], label='Enable LLM web search')
211
+ use_cpu_only = gr.Checkbox(value=lambda: params['cpu only'],
212
+ label='Run extension on CPU only '
213
+ '(Save settings and restart for the change to take effect)')
214
+ with gr.Column():
215
+ save_settings_btn = gr.Button("Save settings")
216
+ saved_success_elem = gr.HTML("", visible=False)
217
+
218
+ with gr.Row():
219
+ result_radio = gr.Radio(
220
+ ["Regular results", "Regular results and instant answers"],
221
+ label="What kind of search results should be returned?",
222
+ value=lambda: "Regular results and instant answers" if
223
+ (params["regular search results"] and params["instant answers"]) else "Regular results"
224
+ )
225
+ with gr.Column():
226
+ search_command_regex = gr.Textbox(label="Search command regex string",
227
+ placeholder=params["default search command regex"],
228
+ value=lambda: params["search command regex"])
229
+ search_command_regex_error_label = gr.HTML("", visible=False)
230
+
231
+ with gr.Column():
232
+ open_url_command_regex = gr.Textbox(label="Open URL command regex string",
233
+ placeholder=params["default open url command regex"],
234
+ value=lambda: params["open url command regex"])
235
+ open_url_command_regex_error_label = gr.HTML("", visible=False)
236
+
237
+ with gr.Column():
238
+ show_results = gr.Checkbox(value=lambda: params['display search results in chat'],
239
+ label='Display search results in chat')
240
+ show_url_content = gr.Checkbox(value=lambda: params['display extracted URL content in chat'],
241
+ label='Display extracted URL content in chat')
242
+ gr.Markdown(value='---')
243
+ with gr.Row():
244
+ with gr.Column():
245
+ gr.Markdown(value='#### Load custom system message\n'
246
+ 'Select a saved custom system message from within the system_prompts folder or "None" '
247
+ 'to clear the selection')
248
+ system_prompt = gr.Dropdown(
249
+ choices=get_available_system_prompts(), label="Select custom system message",
250
+ value=lambda: 'Select custom system message to load...' if custom_system_message_filename is None else
251
+ custom_system_message_filename, elem_classes='slim-dropdown')
252
+ with gr.Row():
253
+ set_system_message_as_default = gr.Checkbox(
254
+ value=lambda: custom_system_message_filename == params["default system prompt filename"],
255
+ label='Set this custom system message as the default')
256
+ refresh_button = ui_module.create_refresh_button(system_prompt, lambda: None,
257
+ lambda: {'choices': get_available_system_prompts()},
258
+ 'refresh-button', interactive=True)
259
+ refresh_button.elem_id = "custom-sysprompt-refresh"
260
+ delete_button = gr.Button('🗑️', elem_classes='refresh-button', interactive=True)
261
+ append_datetime = gr.Checkbox(value=lambda: params['append current datetime'],
262
+ label='Append current date and time when loading custom system message')
263
+ with gr.Column():
264
+ gr.Markdown(value='#### Create custom system message')
265
+ system_prompt_text = gr.Textbox(label="Custom system message", lines=3,
266
+ value=lambda: load_system_prompt(custom_system_message_filename))
267
+ sys_prompt_filename = gr.Text(label="Filename")
268
+ sys_prompt_save_button = gr.Button("Save Custom system message")
269
+ system_prompt_saved_success_elem = gr.HTML("", visible=False)
270
+
271
+ gr.Markdown(value='---')
272
+ with gr.Accordion("Advanced settings", open=False):
273
+ ensemble_weighting = gr.Slider(minimum=0, maximum=1, step=0.05, value=lambda: params["ensemble weighting"],
274
+ label="Ensemble Weighting", info="Smaller values = More keyword oriented, "
275
+ "Larger values = More focus on semantic similarity")
276
+ with gr.Row():
277
+ keyword_retriever = gr.Radio([("Okapi BM25", "bm25"),("SPLADE", "splade")], label="Sparse keyword retriever",
278
+ info="For change to take effect, toggle the extension off and on again",
279
+ value=lambda: params["keyword retriever"])
280
+ splade_batch_size = gr.Slider(minimum=2, maximum=256, step=2, value=lambda: params["splade batch size"],
281
+ label="SPLADE batch size",
282
+ info="Smaller values = Slower retrieval (but lower VRAM usage), "
283
+ "Larger values = Faster retrieval (but higher VRAM usage). "
284
+ "A good trade-off seems to be setting it = 8",
285
+ precision=0)
286
+ with gr.Row():
287
+ chunker = gr.Radio([("Character-based", "character-based"),
288
+ ("Semantic", "semantic")], label="Chunking method",
289
+ value=lambda: params["chunking method"])
290
+ chunker_breakpoint_threshold_amount = gr.Slider(minimum=1, maximum=100, step=1,
291
+ value=lambda: params["chunker breakpoint_threshold_amount"],
292
+ label="Semantic chunking: sentence split threshold (%)",
293
+ info="Defines how different two consecutive sentences have"
294
+ " to be for them to be split into separate chunks",
295
+ precision=0)
296
+ gr.Markdown("**Note: Changing the following might result in DuckDuckGo rate limiting or the LM being overwhelmed**")
297
+ num_search_results = gr.Number(label="Max. search results to return per query", minimum=1, maximum=100,
298
+ value=lambda: params["search results per query"], precision=0)
299
+ num_process_search_results = gr.Number(label="Number of search results to process per query", minimum=1,
300
+ maximum=100, value=lambda: params["duckduckgo results per query"],
301
+ precision=0)
302
+ langchain_similarity_threshold = gr.Number(label="Langchain Similarity Score Threshold", minimum=0., maximum=1.,
303
+ value=lambda: params["langchain similarity score threshold"])
304
+ chunk_size = gr.Number(label="Max. chunk size", info="The maximal size of the individual chunks that each webpage will"
305
+ " be split into, in characters", minimum=2, maximum=10000,
306
+ value=lambda: params["chunk size"], precision=0)
307
+
308
+ with gr.Row():
309
+ searxng_url = gr.Textbox(label="SearXNG URL",
310
+ value=lambda: params["searxng url"])
311
+
312
+ # Event functions to update the parameters in the backend
313
+ enable.input(toggle_extension, enable, enable)
314
+ use_cpu_only.change(lambda x: params.update({"cpu only": x}), use_cpu_only, None)
315
+ save_settings_btn.click(save_settings, None, [saved_success_elem])
316
+ ensemble_weighting.change(lambda x: params.update({"ensemble weighting": x}), ensemble_weighting, None)
317
+ keyword_retriever.change(lambda x: params.update({"keyword retriever": x}), keyword_retriever, None)
318
+ splade_batch_size.change(lambda x: params.update({"splade batch size": x}), splade_batch_size, None)
319
+ chunker.change(lambda x: params.update({"chunking method": x}), chunker, None)
320
+ chunker_breakpoint_threshold_amount.change(lambda x: params.update({"chunker breakpoint_threshold_amount": x}),
321
+ chunker_breakpoint_threshold_amount, None)
322
+ num_search_results.change(lambda x: params.update({"search results per query": x}), num_search_results, None)
323
+ num_process_search_results.change(lambda x: params.update({"duckduckgo results per query": x}),
324
+ num_process_search_results, None)
325
+ langchain_similarity_threshold.change(lambda x: params.update({"langchain similarity score threshold": x}),
326
+ langchain_similarity_threshold, None)
327
+ chunk_size.change(lambda x: params.update({"chunk size": x}), chunk_size, None)
328
+ result_radio.change(update_result_type_setting, result_radio, None)
329
+
330
+ search_command_regex.change(lambda x: update_regex_setting(x, "search command regex",
331
+ search_command_regex_error_label),
332
+ search_command_regex, search_command_regex_error_label, show_progress="hidden")
333
+
334
+ open_url_command_regex.change(lambda x: update_regex_setting(x, "open url command regex",
335
+ open_url_command_regex_error_label),
336
+ open_url_command_regex, open_url_command_regex_error_label, show_progress="hidden")
337
+
338
+ show_results.change(lambda x: params.update({"display search results in chat": x}), show_results, None)
339
+ show_url_content.change(lambda x: params.update({"display extracted URL content in chat": x}), show_url_content,
340
+ None)
341
+ searxng_url.change(lambda x: params.update({"searxng url": x}), searxng_url, None)
342
+
343
+ delete_button.click(
344
+ lambda x: x, system_prompt, gradio('delete_filename')).then(
345
+ lambda: os.path.join(extension_path, "system_prompts", ""), None, gradio('delete_root')).then(
346
+ lambda: gr.update(visible=True), None, gradio('file_deleter'))
347
+ shared.gradio['delete_confirm'].click(
348
+ lambda: "None", None, system_prompt).then(
349
+ None, None, None, _js="() => { document.getElementById('custom-sysprompt-refresh').click() }")
350
+ system_prompt.change(load_system_prompt, system_prompt, shared.gradio['custom_system_message'])
351
+ system_prompt.change(load_system_prompt, system_prompt, system_prompt_text)
352
+ # restore checked state if chosen system prompt matches the default
353
+ system_prompt.change(lambda x: x == params["default system prompt filename"], system_prompt,
354
+ set_system_message_as_default)
355
+ sys_prompt_filename.change(check_file_exists, sys_prompt_filename, system_prompt_saved_success_elem)
356
+ sys_prompt_save_button.click(save_system_prompt, [sys_prompt_filename, system_prompt_text],
357
+ system_prompt_saved_success_elem,
358
+ show_progress="hidden").then(timeout_save_message,
359
+ None,
360
+ system_prompt_saved_success_elem,
361
+ _js="() => { document.getElementById('custom-sysprompt-refresh').click() }",
362
+ show_progress="hidden").then(lambda: "", None,
363
+ sys_prompt_filename,
364
+ show_progress="hidden")
365
+ append_datetime.change(lambda x: params.update({"append current datetime": x}), append_datetime, None)
366
+ # '.input' = only triggers when user changes the value of the component, not a function
367
+ set_system_message_as_default.input(update_default_custom_system_message, set_system_message_as_default, None)
368
+
369
+ # A dummy checkbox to enable the actual "Force web search" checkbox to trigger a gradio event
370
+ force_search_checkbox = gr.Checkbox(value=False, visible=False, elem_id="Force-search-checkbox")
371
+ force_search_checkbox.change(toggle_forced_search, force_search_checkbox, None)
372
+
373
+
374
+ def custom_generate_reply(question, original_question, seed, state, stopping_strings, is_chat):
375
+ """
376
+ Overrides the main text generation function.
377
+ :return:
378
+ """
379
+ global update_history, langchain_compressor
380
+ if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model',
381
+ 'CtransformersModel']:
382
+ generate_func = generate_reply_custom
383
+ else:
384
+ generate_func = generate_reply_HF
385
+
386
+ if not params['enable']:
387
+ for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
388
+ yield reply
389
+ return
390
+
391
+ web_search = False
392
+ read_webpage = False
393
+ max_search_results = int(params["search results per query"])
394
+ instant_answers = params["instant answers"]
395
+ # regular_search_results = params["regular search results"]
396
+
397
+ langchain_compressor.num_results = int(params["duckduckgo results per query"])
398
+ langchain_compressor.similarity_threshold = params["langchain similarity score threshold"]
399
+ langchain_compressor.chunk_size = params["chunk size"]
400
+ langchain_compressor.ensemble_weighting = params["ensemble weighting"]
401
+ langchain_compressor.splade_batch_size = params["splade batch size"]
402
+ langchain_compressor.chunking_method = params["chunking method"]
403
+ langchain_compressor.chunker_breakpoint_threshold_amount = params["chunker breakpoint_threshold_amount"]
404
+
405
+ search_command_regex = params["search command regex"]
406
+ open_url_command_regex = params["open url command regex"]
407
+ searxng_url = params["searxng url"]
408
+ display_search_results = params["display search results in chat"]
409
+ display_webpage_content = params["display extracted URL content in chat"]
410
+
411
+ if search_command_regex == "":
412
+ search_command_regex = params["default search command regex"]
413
+ if open_url_command_regex == "":
414
+ open_url_command_regex = params["default open url command regex"]
415
+
416
+ compiled_search_command_regex = re.compile(search_command_regex)
417
+ compiled_open_url_command_regex = re.compile(open_url_command_regex)
418
+
419
+ if force_search:
420
+ question += f" {params['force search prefix']}"
421
+
422
+ reply = None
423
+ for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
424
+
425
+ if force_search:
426
+ reply = params["force search prefix"] + reply
427
+
428
+ search_re_match = compiled_search_command_regex.search(reply)
429
+ if search_re_match is not None:
430
+ yield reply
431
+ original_model_reply = reply
432
+ web_search = True
433
+ search_term = search_re_match.group(1)
434
+ print(f"LLM_Web_search | Searching for {search_term}...")
435
+ reply += "\n```plaintext"
436
+ reply += "\nSearch tool:\n"
437
+ if searxng_url == "":
438
+ search_generator = Generator(langchain_search_duckduckgo(search_term,
439
+ langchain_compressor,
440
+ max_search_results,
441
+ instant_answers))
442
+ else:
443
+ search_generator = Generator(langchain_search_searxng(search_term,
444
+ searxng_url,
445
+ langchain_compressor,
446
+ max_search_results))
447
+ try:
448
+ for status_message in search_generator:
449
+ yield original_model_reply + f"\n*{status_message}*"
450
+ search_results = search_generator.value
451
+ except Exception as exc:
452
+ exception_message = str(exc)
453
+ reply += f"The search tool encountered an error: {exception_message}"
454
+ print(f'LLM_Web_search | {search_term} generated an exception: {exception_message}')
455
+ else:
456
+ if search_results != "":
457
+ reply += search_results
458
+ else:
459
+ reply += f"\nThe search tool did not return any results."
460
+ reply += "```"
461
+ if display_search_results:
462
+ yield reply
463
+ break
464
+
465
+ open_url_re_match = compiled_open_url_command_regex.search(reply)
466
+ if open_url_re_match is not None:
467
+ yield reply
468
+ original_model_reply = reply
469
+ read_webpage = True
470
+ url = open_url_re_match.group(1)
471
+ print(f"LLM_Web_search | Reading {url}...")
472
+ reply += "\n```plaintext"
473
+ reply += "\nURL opener tool:\n"
474
+ try:
475
+ webpage_content = get_webpage_content(url)
476
+ except Exception as exc:
477
+ reply += f"Couldn't open {url}. Error message: {str(exc)}"
478
+ print(f'LLM_Web_search | {url} generated an exception: {str(exc)}')
479
+ else:
480
+ reply += f"\nText content of {url}:\n"
481
+ reply += webpage_content
482
+ reply += "```\n"
483
+ if display_webpage_content:
484
+ yield reply
485
+ break
486
+ yield reply
487
+
488
+ if web_search or read_webpage:
489
+ display_results = web_search and display_search_results or read_webpage and display_webpage_content
490
+ # Add results to context and continue model output
491
+ new_question = chat.generate_chat_prompt(f"{question}{reply}", state)
492
+ new_reply = ""
493
+ for new_reply in generate_func(new_question, new_question, seed, state,
494
+ stopping_strings, is_chat=is_chat):
495
+ if display_results:
496
+ yield f"{reply}\n{new_reply}"
497
+ else:
498
+ yield f"{original_model_reply}\n{new_reply}"
499
+
500
+ if not display_results:
501
+ update_history = [state["textbox"], f"{reply}\n{new_reply}"]
502
+
503
+
504
+ def output_modifier(string, state, is_chat=False):
505
+ """
506
+ Modifies the output string before it is presented in the UI. In chat mode,
507
+ it is applied to the bot's reply. Otherwise, it is applied to the entire
508
+ output.
509
+ :param string:
510
+ :param state:
511
+ :param is_chat:
512
+ :return:
513
+ """
514
+ return string
515
+
516
+
517
+ def custom_css():
518
+ """
519
+ Returns custom CSS as a string. It is applied whenever the web UI is loaded.
520
+ :return:
521
+ """
522
+ return ''
523
+
524
+
525
+ def custom_js():
526
+ """
527
+ Returns custom javascript as a string. It is applied whenever the web UI is
528
+ loaded.
529
+ :return:
530
+ """
531
+ with open(os.path.join(extension_path, "script.js"), "r") as f:
532
+ return f.read()
533
+
534
+
535
+ def chat_input_modifier(text, visible_text, state):
536
+ """
537
+ Modifies both the visible and internal inputs in chat mode. Can be used to
538
+ hijack the chat input with custom content.
539
+ :param text:
540
+ :param visible_text:
541
+ :param state:
542
+ :return:
543
+ """
544
+ return text, visible_text
545
+
546
+
547
+ def state_modifier(state):
548
+ """
549
+ Modifies the dictionary containing the UI input parameters before it is
550
+ used by the text generation functions.
551
+ :param state:
552
+ :return:
553
+ """
554
+ return state
555
+
556
+
557
+ def history_modifier(history):
558
+ """
559
+ Modifies the chat history before the text generation in chat mode begins.
560
+ :param history:
561
+ :return:
562
+ """
563
+ global update_history
564
+ if update_history:
565
+ history["internal"].append(update_history)
566
+ update_history = None
567
+ return history
semantic_chunker.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import re
3
+ from typing import Any, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, cast
4
+
5
+ import numpy as np
6
+ from langchain_community.utils.math import (
7
+ cosine_similarity,
8
+ )
9
+ from langchain_core.documents import BaseDocumentTransformer, Document
10
+ from langchain_core.embeddings import Embeddings
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+
13
+
14
+ def calculate_cosine_distances(sentence_embeddings) -> np.array:
15
+ """Calculate cosine distances between sentences.
16
+
17
+ Args:
18
+ sentence_embeddings: List of sentence embeddings to calculate distances for.
19
+
20
+ Returns:
21
+ Distance between each pair of adjacent sentences
22
+ """
23
+ return (1 - cosine_similarity(sentence_embeddings, sentence_embeddings)).flatten()[1::len(sentence_embeddings) + 1]
24
+
25
+
26
+ BreakpointThresholdType = Literal["percentile", "standard_deviation", "interquartile"]
27
+ BREAKPOINT_DEFAULTS: Dict[BreakpointThresholdType, float] = {
28
+ "percentile": 95,
29
+ "standard_deviation": 3,
30
+ "interquartile": 1.5,
31
+ }
32
+
33
+
34
+ class BoundedSemanticChunker(BaseDocumentTransformer):
35
+ """First splits the text using semantic chunking according to the specified
36
+ 'breakpoint_threshold_amount', but then uses a RecursiveCharacterTextSplitter
37
+ to split all chunks that are larger than 'max_chunk_size'.
38
+
39
+ Adapted from langchain_experimental.text_splitter.SemanticChunker"""
40
+
41
+ def __init__(
42
+ self,
43
+ embeddings: Embeddings,
44
+ buffer_size: int = 1,
45
+ add_start_index: bool = False,
46
+ breakpoint_threshold_type: BreakpointThresholdType = "percentile",
47
+ breakpoint_threshold_amount: Optional[float] = None,
48
+ number_of_chunks: Optional[int] = None,
49
+ max_chunk_size: int = 500,
50
+ ):
51
+ self._add_start_index = add_start_index
52
+ self.embeddings = embeddings
53
+ self.buffer_size = buffer_size
54
+ self.breakpoint_threshold_type = breakpoint_threshold_type
55
+ self.number_of_chunks = number_of_chunks
56
+ if breakpoint_threshold_amount is None:
57
+ self.breakpoint_threshold_amount = BREAKPOINT_DEFAULTS[
58
+ breakpoint_threshold_type
59
+ ]
60
+ else:
61
+ self.breakpoint_threshold_amount = breakpoint_threshold_amount
62
+ self.max_chunk_size = max_chunk_size
63
+ # Splitting the text on '.', '?', and '!'
64
+ self.sentence_split_regex = re.compile(r"(?<=[.?!])\s+")
65
+
66
+ assert self.breakpoint_threshold_type == "percentile", "only breakpoint_threshold_type 'percentile' is currently supported"
67
+ assert self.buffer_size == 1, "combining sentences is not supported yet"
68
+
69
+ def _calculate_sentence_distances(
70
+ self, sentences: List[dict]
71
+ ) -> Tuple[List[float], List[dict]]:
72
+ """Split text into multiple components."""
73
+ embeddings = self.embeddings.embed_documents(sentences)
74
+ return calculate_cosine_distances(embeddings)
75
+
76
+ def _calculate_breakpoint_threshold(self, distances: np.array, alt_breakpoint_threshold_amount=None) -> float:
77
+ if alt_breakpoint_threshold_amount is None:
78
+ breakpoint_threshold_amount = self.breakpoint_threshold_amount
79
+ else:
80
+ breakpoint_threshold_amount = alt_breakpoint_threshold_amount
81
+ if self.breakpoint_threshold_type == "percentile":
82
+ return cast(
83
+ float,
84
+ np.percentile(distances, breakpoint_threshold_amount),
85
+ )
86
+ elif self.breakpoint_threshold_type == "standard_deviation":
87
+ return cast(
88
+ float,
89
+ np.mean(distances)
90
+ + breakpoint_threshold_amount * np.std(distances),
91
+ )
92
+ elif self.breakpoint_threshold_type == "interquartile":
93
+ q1, q3 = np.percentile(distances, [25, 75])
94
+ iqr = q3 - q1
95
+
96
+ return np.mean(distances) + breakpoint_threshold_amount * iqr
97
+ else:
98
+ raise ValueError(
99
+ f"Got unexpected `breakpoint_threshold_type`: "
100
+ f"{self.breakpoint_threshold_type}"
101
+ )
102
+
103
+ def _threshold_from_clusters(self, distances: List[float]) -> float:
104
+ """
105
+ Calculate the threshold based on the number of chunks.
106
+ Inverse of percentile method.
107
+ """
108
+ if self.number_of_chunks is None:
109
+ raise ValueError(
110
+ "This should never be called if `number_of_chunks` is None."
111
+ )
112
+ x1, y1 = len(distances), 0.0
113
+ x2, y2 = 1.0, 100.0
114
+
115
+ x = max(min(self.number_of_chunks, x1), x2)
116
+
117
+ # Linear interpolation formula
118
+ y = y1 + ((y2 - y1) / (x2 - x1)) * (x - x1)
119
+ y = min(max(y, 0), 100)
120
+
121
+ return cast(float, np.percentile(distances, y))
122
+
123
+ def split_text(
124
+ self,
125
+ text: str,
126
+ ) -> List[str]:
127
+ sentences = self.sentence_split_regex.split(text)
128
+
129
+ # having len(sentences) == 1 would cause the following
130
+ # np.percentile to fail.
131
+ if len(sentences) == 1:
132
+ return sentences
133
+
134
+ bad_sentences = []
135
+ num_good_sentences = 0
136
+
137
+ distances = self._calculate_sentence_distances(sentences)
138
+
139
+ if self.number_of_chunks is not None:
140
+ breakpoint_distance_threshold = self._threshold_from_clusters(distances)
141
+ else:
142
+ breakpoint_distance_threshold = self._calculate_breakpoint_threshold(
143
+ distances
144
+ )
145
+
146
+ indices_above_thresh = [
147
+ i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
148
+ ]
149
+
150
+ chunks = []
151
+ start_index = 0
152
+
153
+ # Iterate through the breakpoints to slice the sentences
154
+ for index in indices_above_thresh:
155
+ # The end index is the current breakpoint
156
+ end_index = index
157
+
158
+ # Slice the sentence_dicts from the current start index to the end index
159
+ group = sentences[start_index : end_index + 1]
160
+ combined_text = " ".join(group)
161
+ if len(combined_text) <= self.max_chunk_size:
162
+ chunks.append(combined_text)
163
+ else:
164
+ sent_lengths = np.array([len(sd) for sd in group])
165
+ good_indices = np.flatnonzero(np.cumsum(sent_lengths) <= self.max_chunk_size)
166
+ smaller_group = [group[i] for i in good_indices]
167
+ if smaller_group:
168
+ combined_text = " ".join(smaller_group)
169
+ chunks.append(combined_text)
170
+ group = group[good_indices[-1]:]
171
+ bad_sentences.extend(group)
172
+
173
+ # Update the start index for the next group
174
+ start_index = index + 1
175
+
176
+ # The last group, if any sentences remain
177
+ if start_index < len(sentences):
178
+ group = sentences[start_index:]
179
+ combined_text = " ".join(group)
180
+ if len(combined_text) <= self.max_chunk_size:
181
+ chunks.append(combined_text)
182
+ else:
183
+ sent_lengths = np.array([len(sd) for sd in group])
184
+ good_indices = np.flatnonzero(np.cumsum(sent_lengths) <= self.max_chunk_size)
185
+ smaller_group = [group[i] for i in good_indices]
186
+ if smaller_group:
187
+ combined_text = " ".join(smaller_group)
188
+ chunks.append(combined_text)
189
+ group = group[good_indices[-1]:]
190
+ bad_sentences.extend(group)
191
+
192
+ # If pure semantic chunking wasn't able to split all text for any breakpoint_threshold_amount,
193
+ # split the remaining problematic text using a recursive character splitter instead
194
+ if len(bad_sentences) > 0:
195
+ recursive_splitter = RecursiveCharacterTextSplitter(chunk_size=self.max_chunk_size, chunk_overlap=10,
196
+ separators=["\n\n", "\n", ".", ", ", " ", ""])
197
+ remaining_text = "".join(bad_sentences)
198
+ chunks.extend(recursive_splitter.split_text(remaining_text))
199
+ return chunks
200
+
201
+ def create_documents(
202
+ self, texts: List[str], metadatas: Optional[List[dict]] = None
203
+ ) -> List[Document]:
204
+ """Create documents from a list of texts."""
205
+ _metadatas = metadatas or [{}] * len(texts)
206
+ documents = []
207
+ for i, text in enumerate(texts):
208
+ index = -1
209
+ for chunk in self.split_text(text):
210
+ metadata = copy.deepcopy(_metadatas[i])
211
+ if self._add_start_index:
212
+ index = text.find(chunk, index + 1)
213
+ metadata["start_index"] = index
214
+ new_doc = Document(page_content=chunk, metadata=metadata)
215
+ documents.append(new_doc)
216
+ return documents
217
+
218
+ def split_documents(self, documents: Iterable[Document]) -> List[Document]:
219
+ """Split documents."""
220
+ texts, metadatas = [], []
221
+ for doc in documents:
222
+ texts.append(doc.page_content)
223
+ metadatas.append(doc.metadata)
224
+ return self.create_documents(texts, metadatas=metadatas)
225
+
226
+ def transform_documents(
227
+ self, documents: Sequence[Document], **kwargs: Any
228
+ ) -> Sequence[Document]:
229
+ """Transform sequence of documents by splitting them."""
230
+ return self.split_documents(list(documents))
231
+
232
+
233
+
system_prompts/bing_at_home ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ A chat between a curious user and artificial intelligence assistant. The assistant ends every message with an emoji matching the emotion of the the message. The assistant is never confident about facts. The assistant always searches the web for facts. The assistant uses the available tools to retrieve relevant information and give helpful, detailed, and polite answers to the user's questions.
2
+
3
+ Search tool command format: Search_web("<|query|>")
system_prompts/copilot_prompt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are a state-of-the-art artificial intelligence assistant equipped with a comprehensive web search tool. Your mission is to provide accurate, up-to-date information and helpful answers to user queries. Here are the key guidelines:
2
+
3
+ 1. **Context-Aware Web Search:**
4
+ - When a user message contains relevant information or context suggesting the need for a web search, you will autonomously output the search command: `Search_web("query")`.
5
+ - Prioritize reliable sources and communicate findings clearly.
6
+
7
+ 2. **Fact-Driven Humility:**
8
+ - Remain cautious about stating specific facts and up-to-date information based only on your pre-programmed knowledge base.
9
+ - If uncertainty arises, default to searching the web for accurate details.
10
+
11
+ 3. **Polite and Detailed Responses:**
12
+ - Engage in friendly, empathetic conversations with users.
13
+ - Extract information from search results to guide your answers.
14
+ - Always end messages with an appropriate emoji to match the conveyed emotion.
15
+
16
+ Remember the search command format: `Search_web("query")`.
system_prompts/default_system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ A chat between a curious user and artificial intelligence assistant. The assistant is never confident about facts and up-to-date information. The assistant can search the web for facts and up to date information using the following search command format:
2
+
3
+ Search_web("query")
4
+
5
+ The search tool will search the web for these keywords and return the results. Finally, the assistant extracts the information from the results of the search tool to guide its response.
system_prompts/second_person_command_last ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ You are a state of the art artificial intelligence assistant. However, you are never confident about specific facts and up-to-date information. You must search the web to obtain this information. The search tool will return the results. Finally, you extract the information from the results of the search tool to guide your response. To trigger a web search, you must use the following search command format:
2
+
3
+ Search_web("query")
system_prompts/websearch_gpt4_prompt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ You are an artificial intelligence assistant. You have access to a search tool. Use the search tool in the following circumstances:
2
+
3
+ - User is asking about current events or something that requires real-time information (weather, sports scores, etc.)
4
+ - User is asking about some term you are totally unfamiliar with (it might be new)
5
+ - User explicitly asks you to search or provide links to references
6
+
7
+ Use the following command to use the search tool:
8
+ Search_web("query")
9
+
10
+ The search tool will search the web and return the results. You extract the information from the results of the search tool to give helpful, detailed, and polite answers to the user's questions.