Spaces:
Sleeping
Sleeping
Arts-of-coding
commited on
Update dash_plotly_QC_scRNA.py
Browse files- dash_plotly_QC_scRNA.py +23 -17
dash_plotly_QC_scRNA.py
CHANGED
@@ -54,32 +54,38 @@ external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
|
|
54 |
app = dash.Dash(__name__, external_stylesheets=external_stylesheets) #, requests_pathname_prefix='/dashboard1/'
|
55 |
|
56 |
tab0_content = html.Div([
|
57 |
-
html.Label("Dataset chosen"),
|
58 |
dcc.Dropdown(id='dpdn1', value="d1011/10xflexd1011_umap_clusres", multi=False,
|
59 |
options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
60 |
])
|
61 |
|
62 |
@app.callback(
|
|
|
63 |
Input(component_id='dpdn1', component_property='value')
|
64 |
)
|
65 |
-
|
66 |
-
def update_dataset(dataset_chosen): #batch_chosen,
|
67 |
filepath = f"az://data10xflex/{dataset_chosen}"
|
68 |
-
df = pl.read_parquet(filepath,storage_options=storage_options)
|
69 |
-
return df
|
70 |
|
71 |
-
min_value = df[col_features].min()
|
72 |
-
max_value = df[col_features].max()
|
73 |
-
|
74 |
-
min_value_2 = df[col_counts].min()
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Loads in the conditions specified in the yaml file
|
85 |
|
|
|
54 |
app = dash.Dash(__name__, external_stylesheets=external_stylesheets) #, requests_pathname_prefix='/dashboard1/'
|
55 |
|
56 |
tab0_content = html.Div([
|
57 |
+
html.Label("Dataset chosen"),
|
58 |
dcc.Dropdown(id='dpdn1', value="d1011/10xflexd1011_umap_clusres", multi=False,
|
59 |
options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
60 |
])
|
61 |
|
62 |
@app.callback(
|
63 |
+
Output('dynamic-table', 'children'),
|
64 |
Input(component_id='dpdn1', component_property='value')
|
65 |
)
|
66 |
+
def update_table(dataset_chosen):
|
|
|
67 |
filepath = f"az://data10xflex/{dataset_chosen}"
|
68 |
+
df = pl.read_parquet(filepath, storage_options=storage_options)
|
|
|
69 |
|
70 |
+
min_value = df[col_features].min().item()
|
71 |
+
max_value = df[col_features].max().item()
|
72 |
+
|
73 |
+
min_value_2 = round(df[col_counts].min())
|
74 |
+
max_value_2 = round(df[col_counts].max())
|
75 |
+
|
76 |
+
min_value_3 = round(df[col_mt].min(), 1)
|
77 |
+
max_value_3 = round(df[col_mt].max(), 1)
|
78 |
+
|
79 |
+
# Create other visualizations or perform calculations below using the updated df variable
|
80 |
+
|
81 |
+
return [
|
82 |
+
html.H5(f'Minimum Value - {col_features}: {min_value}'),
|
83 |
+
html.H5(f'Maximum Value - {col_features}: {max_value}'),
|
84 |
+
html.H5(f'Minimum Value - {col_counts}: {min_value_2}'),
|
85 |
+
html.H5(f'Maximum Value - {col_counts}: {max_value_2}'),
|
86 |
+
html.H5(f'Minimum Value - {col_mt}: {min_value_3}'),
|
87 |
+
html.H5(f'Maximum Value - {col_mt}: {max_value_3}'),
|
88 |
+
]
|
89 |
|
90 |
# Loads in the conditions specified in the yaml file
|
91 |
|