Spaces:
Sleeping
Sleeping
Update dash_plotly_QC_scRNA.py
Browse files- dash_plotly_QC_scRNA.py +16 -14
dash_plotly_QC_scRNA.py
CHANGED
@@ -59,25 +59,28 @@ tab0_content = html.Div([
|
|
59 |
options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
60 |
])
|
61 |
|
|
|
|
|
|
|
|
|
62 |
def update_dataset(dataset_chosen): #batch_chosen,
|
63 |
filepath = f"az://data10xflex/{dataset_chosen}"
|
64 |
df = pl.read_parquet(filepath,storage_options=storage_options)
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
min_value_2 = round(min_value_2)
|
71 |
-
max_value_2 = df[col_counts].max()
|
72 |
-
max_value_2 = round(max_value_2)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
return df, min_value, max_value, min_value_2, max_value_2, min_value_3, max_value_3
|
80 |
-
|
81 |
# Loads in the conditions specified in the yaml file
|
82 |
|
83 |
# Note: Future version perhaps all values from a column in the dataframe of the parquet file
|
@@ -309,7 +312,6 @@ def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
|
309 |
Output(component_id='scatter-plot-11', component_property='figure'),
|
310 |
Output(component_id='scatter-plot-12', component_property='figure'),
|
311 |
Output(component_id='my-graph2', component_property='figure'),
|
312 |
-
Input(component_id='dpdn1', component_property='value'),
|
313 |
Input(component_id='dpdn2', component_property='value'),
|
314 |
Input(component_id='dpdn3', component_property='value'),
|
315 |
Input(component_id='dpdn4', component_property='value'),
|
|
|
59 |
options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
60 |
])
|
61 |
|
62 |
+
@app.callback(
|
63 |
+
Input(component_id='dpdn1', component_property='value')
|
64 |
+
)
|
65 |
+
|
66 |
def update_dataset(dataset_chosen): #batch_chosen,
|
67 |
filepath = f"az://data10xflex/{dataset_chosen}"
|
68 |
df = pl.read_parquet(filepath,storage_options=storage_options)
|
69 |
+
return df
|
70 |
+
|
71 |
+
min_value = df[col_features].min()
|
72 |
+
max_value = df[col_features].max()
|
73 |
|
74 |
+
min_value_2 = df[col_counts].min()
|
75 |
+
min_value_2 = round(min_value_2)
|
76 |
+
max_value_2 = df[col_counts].max()
|
77 |
+
max_value_2 = round(max_value_2)
|
|
|
|
|
|
|
78 |
|
79 |
+
min_value_3 = df[col_mt].min()
|
80 |
+
min_value_3 = round(min_value_3, 1)
|
81 |
+
max_value_3 = df[col_mt].max()
|
82 |
+
max_value_3 = round(max_value_3, 1)
|
83 |
|
|
|
|
|
84 |
# Loads in the conditions specified in the yaml file
|
85 |
|
86 |
# Note: Future version perhaps all values from a column in the dataframe of the parquet file
|
|
|
312 |
Output(component_id='scatter-plot-11', component_property='figure'),
|
313 |
Output(component_id='scatter-plot-12', component_property='figure'),
|
314 |
Output(component_id='my-graph2', component_property='figure'),
|
|
|
315 |
Input(component_id='dpdn2', component_property='value'),
|
316 |
Input(component_id='dpdn3', component_property='value'),
|
317 |
Input(component_id='dpdn4', component_property='value'),
|