mousesuture / dash_plotly_QC_scRNA.py
Arts-of-coding's picture
Update dash_plotly_QC_scRNA.py
4a6c4e6 verified
raw
history blame
15.1 kB
# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
# Shoutout to Coding-with-Adam for the initial template of the project:
# https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
import dash
from dash import dcc, html, Output, Input
import plotly.express as px
import dash_callback_chain
import yaml
import polars as pl
import os
pl.enable_string_cache(False)
# Set custom resolution for plots:
config_fig = {
'toImageButtonOptions': {
'format': 'svg',
'filename': 'custom_image',
'height': 600,
'width': 700,
'scale': 1,
}
}
from adlfs import AzureBlobFileSystem
mountpount=os.environ['AZURE_MOUNT_POINT'],
accountkey=os.environ['AZURE_STORAGE_ACCESS_KEY'],
accountname=os.environ['AZURE_STORAGE_ACCOUNT'],
storage_options={'account_name': ACCOUNT_NAME, 'anon': False}
df = pl.read_parquet(path="liu/filename.parquet",storage_options=storage_options)
#abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
#df = df.rename({"__index_level_0__": "Unnamed: 0"})
# Setup the app
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets, requests_pathname_prefix='/dashboard1/')
min_value = df[col_features].min()
max_value = df[col_features].max()
min_value_2 = df[col_counts].min()
min_value_2 = round(min_value_2)
max_value_2 = df[col_counts].max()
max_value_2 = round(max_value_2)
min_value_3 = df[col_mt].min()
min_value_3 = round(min_value_3, 1)
max_value_3 = df[col_mt].max()
max_value_3 = round(max_value_3, 1)
# Loads in the conditions specified in the yaml file
# Note: Future version perhaps all values from a column in the dataframe of the parquet file
# Note 2: This could also be a tsv of the categories and own specified colors
# Create the first tab content
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
tab1_content = html.Div([
dcc.Dropdown(id='dpdn2', value=conditions, multi=True,
options=conditions),
html.Label("N Genes by Counts"),
dcc.RangeSlider(
id='range-slider-1',
step=250,
value=[min_value, max_value],
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
),
dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
html.Label("Total Counts"),
dcc.RangeSlider(
id='range-slider-2',
step=7500,
value=[min_value_2, max_value_2],
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
),
dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
html.Label("Percent Mitochondrial Genes"),
dcc.RangeSlider(
id='range-slider-3',
step=0.1,
min=0,
max=1,
value=[min_value_3, max_value_3],
),
dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
html.Div([
dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
className='four columns',config=config_fig
),
dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
]),
])
# Create the second tab content with scatter-plot-5 and scatter-plot-6
tab2_content = html.Div([
html.Div([
html.Label("S-cycle genes"),
dcc.Dropdown(id='dpdn3', value="Cdc45", multi=False,
options=[
"Cdc45",
"Uhrf1",
"Mcm2",
"Slbp",
"Mcm5",
"Pola1",
"Gmnn",
"Cdc6",
"Rrm2",
"Atad2",
"Dscc1",
"Mcm4",
"Chaf1b",
"Rfc2",
"Msh2",
"Fen1",
"Hells",
"Prim1",
"Tyms",
"Mcm6",
"Wdr76",
"Rad51",
"Pcna",
"Ccne2",
"Casp8ap2",
"Usp1",
"Nasp",
"Rpa2",
"Ung",
"Rad51ap1",
"Blm",
"Pold3",
"Rrm1",
"Cenpu",
"Gins2",
"Tipin",
"Brip1",
"Dtl",
"Exo1",
"Ubr7",
"Clspn",
"E2f8",
"Cdca7"
]),
html.Label("G2M-cycle genes"),
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
options=[
"Ube2c",
"Lbr",
"Ctcf",
"Cdc20",
"Cbx5",
"Kif11",
"Anp32e",
"Birc5",
"Cdk1",
"Tmpo",
"Hmmr",
"Pimreg",
"Aurkb",
"Top2a",
"Gtse1",
"Rangap1",
"Cdca3",
"Ndc80",
"Kif20b",
"Cenpf",
"Nek2",
"Nuf2",
"Nusap1",
"Bub1",
"Tpx2",
"Aurka",
"Ect2",
"Cks1b",
"Kif2c",
"Cdca8",
"Cenpa",
"Mki67",
"Ccnb2",
"Kif23",
"Smc4",
"G2e3",
"Tubb4b",
"Anln",
"Tacc3",
"Dlgap5",
"Ckap2",
"Ncapd2",
"Ttk",
"Ckap5",
"Cdc25c",
"Hjurp",
"Cenpe",
"Ckap2l",
"Cdca2",
"Hmgb2",
"Cks2",
"Psrc1",
"Gas2l3"
]),
]),
html.Div([
dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
]),
])
# Create the second tab content with scatter-plot-5 and scatter-plot-6
tab3_content = html.Div([
html.Div([
html.Label("UMAP condition 1"),
dcc.Dropdown(id='dpdn5', value="total_counts", multi=False,
options=df.columns),
html.Label("UMAP condition 2"),
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
options=df.columns),
]),
html.Div([
dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
className='four columns',config=config_fig
)
]),
])
# Define the tabs layout
app.layout = html.Div([
dcc.Tabs(id='tabs', style= {'width': 400,
'font-size': '100%',
'height': 50}, value='tab1',children=[
dcc.Tab(label='QC', value='tab1', children=tab1_content),
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
]),
])
# Define the circular callback
@app.callback(
Output("min-slider-1", "value"),
Output("max-slider-1", "value"),
Output("min-slider-2", "value"),
Output("max-slider-2", "value"),
Output("min-slider-3", "value"),
Output("max-slider-3", "value"),
Input("min-slider-1", "value"),
Input("max-slider-1", "value"),
Input("min-slider-2", "value"),
Input("max-slider-2", "value"),
Input("min-slider-3", "value"),
Input("max-slider-3", "value"),
)
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
return min_1, max_1, min_2, max_2, min_3, max_3
@app.callback(
Output('range-slider-1', 'value'),
Output('range-slider-2', 'value'),
Output('range-slider-3', 'value'),
Input('min-slider-1', 'value'),
Input('max-slider-1', 'value'),
Input('min-slider-2', 'value'),
Input('max-slider-2', 'value'),
Input('min-slider-3', 'value'),
Input('max-slider-3', 'value'),
)
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
@app.callback(
Output(component_id='my-graph', component_property='figure'),
Output(component_id='pie-graph', component_property='figure'),
Output(component_id='scatter-plot', component_property='figure'),
Output(component_id='scatter-plot-2', component_property='figure'),
Output(component_id='scatter-plot-3', component_property='figure'),
Output(component_id='scatter-plot-4', component_property='figure'), # Add this new scatter plot
Output(component_id='scatter-plot-5', component_property='figure'),
Output(component_id='scatter-plot-6', component_property='figure'),
Output(component_id='scatter-plot-7', component_property='figure'),
Output(component_id='scatter-plot-8', component_property='figure'),
Output(component_id='scatter-plot-9', component_property='figure'),
Output(component_id='scatter-plot-10', component_property='figure'),
Output(component_id='scatter-plot-11', component_property='figure'),
Output(component_id='my-graph2', component_property='figure'),
Input(component_id='dpdn2', component_property='value'),
Input(component_id='dpdn3', component_property='value'),
Input(component_id='dpdn4', component_property='value'),
Input(component_id='dpdn5', component_property='value'),
Input(component_id='dpdn6', component_property='value'),
Input(component_id='range-slider-1', component_property='value'),
Input(component_id='range-slider-2', component_property='value'),
Input(component_id='range-slider-3', component_property='value')
)
def update_graph_and_pie_chart(batch_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, range_value_1, range_value_2, range_value_3):
dff = df.filter(
(pl.col('batch').cast(str).is_in(batch_chosen)) &
(pl.col(col_features) >= range_value_1[0]) &
(pl.col(col_features) <= range_value_1[1]) &
(pl.col(col_counts) >= range_value_2[0]) &
(pl.col(col_counts) <= range_value_2[1]) &
(pl.col(col_mt) >= range_value_3[0]) &
(pl.col(col_mt) <= range_value_3[1])
)
#Drop categories that are not in the filtered data
dff = dff.with_columns(dff['batch'].cast(str))
dff = dff.with_columns(dff['batch'].cast(pl.Categorical))
# Plot figures
fig_violin = px.violin(data_frame=dff, x='batch', y=col_features, box=True, points="all",
color='batch', hover_name='batch',template="seaborn")
# Calculate the percentage of each category (normalized_count) for pie chart
category_counts = dff.group_by("batch").agg(pl.col("batch").count().alias("count"))
total_count = len(dff)
category_counts = category_counts.with_columns((pl.col("count") / total_count * 100).alias("normalized_count"))
# Display the result
labels = category_counts["batch"].to_list()
values = category_counts["normalized_count"].to_list()
total_cells = total_count # Calculate total number of cells
pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
fig_pie = px.pie(names=labels, values=values, title=pie_title,template="seaborn")
# Create the scatter plots
fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color='batch',
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch', title="S-cycle gene:",template="seaborn")
fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch', title="G2M-cycle gene:",template="seaborn")
fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch', title="S score:",template="seaborn")
fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch', title="G2M score:",template="seaborn")
fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color='batch',
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='batch',template="seaborn")
fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_violin2
# Set http://localhost:5000/ in web browser
# Now create your regular FASTAPI application
if __name__ == '__main__':
app.run_server(debug=True, use_reloader=False) #host='0.0.0.0', #, port=5000