File size: 2,403 Bytes
56dc3ca
 
 
 
 
 
 
 
 
 
 
 
 
411395e
56dc3ca
 
 
 
 
 
 
 
 
 
 
 
 
901b6e3
 
 
 
 
3fed58d
 
 
 
 
 
901b6e3
 
 
 
 
 
 
 
 
 
56dc3ca
 
901b6e3
 
 
 
 
 
 
 
 
 
 
56dc3ca
 
901b6e3
56dc3ca
 
 
 
 
 
 
 
 
 
 
 
1a10d4e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.wsgi import WSGIMiddleware
from dash_plotly_QC_scRNA import app as dashboard1
#from app2 import app as dashboard2

#########################################################
import dash
from dash import dcc, html, Output, Input
import plotly.express as px
import dash_callback_chain
import yaml
import polars as pl
import os
pl.enable_string_cache(False)

# Set custom resolution for plots:
config_fig = {
  'toImageButtonOptions': {
    'format': 'svg',
    'filename': 'custom_image',
    'height': 600,
    'width': 700,
    'scale': 1,
  }
}

from adlfs import AzureBlobFileSystem
mountpount=os.environ['AZURE_MOUNT_POINT'],
accountkey=os.environ['AZURE_STORAGE_ACCESS_KEY'],
accountname=os.environ['AZURE_STORAGE_ACCOUNT'],

filepath = 'az://bucket-name/df_test_predicate_pushdown.parquet'

storage_options={'account_name': accountname, 'account_key': accountkey,'anon': False}
azfs = AzureBlobFileSystem(**storage_options )

df = pl.read_parquet(filepath,storage_options=storage_options)

#pq.write_table(polars_dataframe.to_arrow(), 'liu/file_name.parquet', filesystem=abfs)
#storage_options = {
#    "aws_access_key_id": ,
#    "aws_secret_access_key": os.environ['AZURE_STORAGE_ACCESS_KEY'],
#}
#df = pl.scan_parquet(source, storage_options=storage_options)


#config_path = "./azure/data/config.yaml"

# Add the read-in data from the yaml file
#def read_config(filename):
#    with open(filename, 'r') as yaml_file:
#        config = yaml.safe_load(yaml_file)
#   return config

#config = read_config(config_path)
#path_parquet = config.get("path_parquet")
#conditions = config.get("conditions")
#col_features = config.get("col_features")
#col_counts = config.get("col_counts")
#col_mt = config.get("col_mt")

# Import the data from one .parquet file
#df = pl.read_parquet(path_parquet)
#df = df.rename({"__index_level_0__": "Unnamed: 0"})

# Setup the app
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

######################################################################
# Define the FastAPI server
# Mount the Dash app as a sub-application in the FastAPI server
#app.mount("/dashboard2", WSGIMiddleware(dashboard2.server))

# Start the FastAPI server
if __name__ == "__main__":
    app = FastAPI()
    app.mount("/dashboard1", WSGIMiddleware(dashboard1.server))
    uvicorn.run(app, host="0.0.0.0")