Spaces:
Sleeping
Sleeping
# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects | |
# Shoutout to Coding-with-Adam for the initial template of the project: | |
# https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py | |
import dash | |
from dash import dcc, html, Output, Input, callback | |
import plotly.express as px | |
import dash_callback_chain | |
import yaml | |
import polars as pl | |
import os | |
pl.enable_string_cache(False) | |
dash.register_page(__name__, location="sidebar") | |
dataset = "dataaniridia/4mwt/sc_liu_aniridia_4mwt_processed" | |
# Set custom resolution for plots: | |
config_fig = { | |
'toImageButtonOptions': { | |
'format': 'svg', | |
'filename': 'custom_image', | |
'height': 600, | |
'width': 700, | |
'scale': 1, | |
} | |
} | |
from adlfs import AzureBlobFileSystem | |
mountpount=os.environ['AZURE_MOUNT_POINT'], | |
AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY') | |
AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT') | |
# Load in config file | |
config_path = "./data/config.yaml" | |
# Add the read-in data from the yaml file | |
def read_config(filename): | |
with open(filename, 'r') as yaml_file: | |
config = yaml.safe_load(yaml_file) | |
return config | |
config = read_config(config_path) | |
path_parquet = config.get("path_parquet") | |
col_batch = config.get("col_batch") | |
col_features = config.get("col_features") | |
col_counts = config.get("col_counts") | |
col_mt = config.get("col_mt") | |
#filepath = f"az://{path_parquet}" | |
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False} | |
#azfs = AzureBlobFileSystem(**storage_options ) | |
# Load in multiple dataframes | |
df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options) | |
# Setup the app | |
#external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] | |
#app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/' | |
#df = pl.read_parquet(filepath,storage_options=storage_options) | |
#df = pl.DataFrame() | |
#abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey) | |
#df = df.rename({"__index_level_0__": "Unnamed: 0"}) | |
#df1 = pl.read_parquet(filepath, storage_options=storage_options) | |
#df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options) | |
#tab0_content = html.Div([ | |
# html.Label("Dataset chosen"), | |
# dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False, | |
# options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"]) | |
#]) | |
#@app.callback( | |
# Input(component_id='dpdn1', component_property='value') | |
#) | |
#def update_filepath(dpdn1): | |
# global df | |
# if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath): | |
# print("not identical filepath, chosing other") | |
# df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options) | |
# df = df2 | |
# return | |
#df = pl.read_parquet(filepath, storage_options=storage_options) | |
min_value = df[col_features].min() | |
max_value = df[col_features].max() | |
min_value_2 = df[col_counts].min() | |
min_value_2 = round(min_value_2) | |
max_value_2 = df[col_counts].max() | |
max_value_2 = round(max_value_2) | |
min_value_3 = df[col_mt].min() | |
min_value_3 = round(min_value_3, 1) | |
max_value_3 = df[col_mt].max() | |
max_value_3 = round(max_value_3, 1) | |
# Loads in the conditions specified in the yaml file | |
# Note: Future version perhaps all values from a column in the dataframe of the parquet file | |
# Note 2: This could also be a tsv of the categories and own specified colors | |
#conditions = df[col_batch].unique().to_list() | |
# Create the first tab content | |
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads | |
tab1_content = html.Div([ | |
html.Label("Column chosen"), | |
dcc.Dropdown(id='dpdn2', value="batch", multi=False, | |
options=df.columns), | |
html.Label("N Genes by Counts"), | |
dcc.RangeSlider( | |
id='range-slider_db3-1', | |
step=250, | |
value=[min_value, max_value], | |
marks={i: str(i) for i in range(min_value, max_value + 1, 250)}, | |
), | |
dcc.Input(id='min-slider_db3-1', type='number', value=min_value, debounce=True), | |
dcc.Input(id='max-slider_db3-1', type='number', value=max_value, debounce=True), | |
html.Label("Total Counts"), | |
dcc.RangeSlider( | |
id='range-slider_db3-2', | |
step=7500, | |
value=[min_value_2, max_value_2], | |
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)}, | |
), | |
dcc.Input(id='min-slider_db3-2', type='number', value=min_value_2, debounce=True), | |
dcc.Input(id='max-slider_db3-2', type='number', value=max_value_2, debounce=True), | |
html.Label("Percent Mitochondrial Genes"), | |
dcc.RangeSlider( | |
id='range-slider_db3-3', | |
step=5, | |
min=0, | |
max=100, | |
value=[min_value_3, max_value_3], | |
), | |
dcc.Input(id='min-slider_db3-3', type='number', value=min_value_3, debounce=True), | |
dcc.Input(id='max-slider_db3-3', type='number', value=max_value_3, debounce=True), | |
html.Div([ | |
dcc.Graph(id='pie-graph_db3', figure={}, className='four columns',config=config_fig), | |
dcc.Graph(id='my-graph_db3', figure={}, clickData=None, hoverData=None, | |
className='four columns',config=config_fig | |
), | |
dcc.Graph(id='scatter-plot_db3', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-2', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-3', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-4', figure={}, className='four columns',config=config_fig) | |
]), | |
]) | |
# Create the second tab content with scatter-plot_db3-5 and scatter-plot_db3-6 | |
tab2_content = html.Div([ | |
html.Div([ | |
html.Label("S-cycle genes"), | |
dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False, | |
options=[ | |
"Cdc45", | |
"Uhrf1", | |
"Mcm2", | |
"Slbp", | |
"Mcm5", | |
"Pola1", | |
"Gmnn", | |
"Cdc6", | |
"Rrm2", | |
"Atad2", | |
"Dscc1", | |
"Mcm4", | |
"Chaf1b", | |
"Rfc2", | |
"Msh2", | |
"Fen1", | |
"Hells", | |
"Prim1", | |
"Tyms", | |
"Mcm6", | |
"Wdr76", | |
"Rad51", | |
"Pcna", | |
"Ccne2", | |
"Casp8ap2", | |
"Usp1", | |
"Nasp", | |
"Rpa2", | |
"Ung", | |
"Rad51ap1", | |
"Blm", | |
"Pold3", | |
"Rrm1", | |
"Cenpu", | |
"Gins2", | |
"Tipin", | |
"Brip1", | |
"Dtl", | |
"Exo1", | |
"Ubr7", | |
"Clspn", | |
"E2f8", | |
"Cdca7" | |
]), | |
html.Label("G2M-cycle genes"), | |
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False, | |
options=[ | |
"Ube2c", | |
"Lbr", | |
"Ctcf", | |
"Cdc20", | |
"Cbx5", | |
"Kif11", | |
"Anp32e", | |
"Birc5", | |
"Cdk1", | |
"Tmpo", | |
"Hmmr", | |
"Pimreg", | |
"Aurkb", | |
"Top2a", | |
"Gtse1", | |
"Rangap1", | |
"Cdca3", | |
"Ndc80", | |
"Kif20b", | |
"Cenpf", | |
"Nek2", | |
"Nuf2", | |
"Nusap1", | |
"Bub1", | |
"Tpx2", | |
"Aurka", | |
"Ect2", | |
"Cks1b", | |
"Kif2c", | |
"Cdca8", | |
"Cenpa", | |
"Mki67", | |
"Ccnb2", | |
"Kif23", | |
"Smc4", | |
"G2e3", | |
"Tubb4b", | |
"Anln", | |
"Tacc3", | |
"Dlgap5", | |
"Ckap2", | |
"Ncapd2", | |
"Ttk", | |
"Ckap5", | |
"Cdc25c", | |
"Hjurp", | |
"Cenpe", | |
"Ckap2l", | |
"Cdca2", | |
"Hmgb2", | |
"Cks2", | |
"Psrc1", | |
"Gas2l3" | |
]), | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-5', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-6', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-7', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-8', figure={}, className='three columns',config=config_fig) | |
]), | |
]) | |
# Create the second tab content with scatter-plot_db3-5 and scatter-plot_db3-6 | |
tab3_content = html.Div([ | |
html.Div([ | |
html.Label("UMAP condition 1"), | |
dcc.Dropdown(id='dpdn5', value="batch", multi=False, | |
options=df.columns), | |
html.Label("UMAP condition 2"), | |
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False, | |
options=df.columns), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-9', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-10', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-11', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='my-graph_db32', figure={}, clickData=None, hoverData=None, | |
className='four columns',config=config_fig | |
) | |
]), | |
]), | |
]) | |
# html.Div([ | |
# dcc.Graph(id='scatter-plot_db3-12', figure={}, className='four columns',config=config_fig) | |
# ]), | |
tab4_content = html.Div([ | |
html.Div([ | |
html.Label("Multi gene"), | |
dcc.Dropdown(id='dpdn7', value=["Pax6","Krt15","Trp63","Krt14","Krt5","Sox9","Cdk8","Il31ra","Gpha2","Abl1","Areg","Lars2","Calml3","Krt13","Krt19","Psca","Muc20","Muc4","Aqp5","S100a8","S100a9","Lama3","Itgb4","Itga6","Lamc2","Cd44","Cdh1","Thy1","Dcn","Scn7a","Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1","Abcg2","Lyve1","Mki67","Top2a","Ube2c","Birc5"], multi=True, | |
options=df.columns), | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db3-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}), # px) | |
]), | |
]) | |
# Define the tabs layout | |
layout = html.Div([ | |
html.H1(f'Dataset analysis dashboard: {dataset}'), | |
dcc.Tabs(id='tabs', style= {'width': 600, | |
'font-size': '100%', | |
'height': 50}, value='tab1',children=[ | |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content), | |
dcc.Tab(label='QC', value='tab1', children=tab1_content), | |
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content), | |
dcc.Tab(label='Custom', value='tab3', children=tab3_content), | |
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content), | |
]), | |
]) | |
# Define the circular callback | |
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3): | |
return min_1, max_1, min_2, max_2, min_3, max_3 | |
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3): | |
return [min_1, max_1], [min_2, max_2], [min_3, max_3] | |
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen, | |
batch_chosen = df[col_chosen].unique().to_list() | |
dff = df.filter( | |
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) & | |
(pl.col(col_features) >= range_value_1[0]) & | |
(pl.col(col_features) <= range_value_1[1]) & | |
(pl.col(col_counts) >= range_value_2[0]) & | |
(pl.col(col_counts) <= range_value_2[1]) & | |
(pl.col(col_mt) >= range_value_3[0]) & | |
(pl.col(col_mt) <= range_value_3[1]) | |
) | |
#Drop categories that are not in the filtered data | |
dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical)) | |
dff = dff.sort(col_chosen) | |
# Plot figures | |
fig_violin_db3 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all", | |
color=col_chosen, hover_name=col_chosen,template="seaborn") | |
# Cache commonly used subexpressions | |
total_count = pl.lit(len(dff)) | |
category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count")) | |
category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count")) | |
# Sort the dataframe | |
#category_counts = category_counts.sort(col_chosen) does not work check if the names are different ... | |
# Display the result | |
total_cells = total_count # Calculate total number of cells | |
pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title | |
# Calculate the mean expression | |
# Melt wide format DataFrame into long format | |
# Specify batch column as string type and gene columns as float type | |
list_conds = condition3_chosen | |
list_conds += [col_chosen] | |
dff_pre = dff.select(list_conds) | |
# Melt wide format DataFrame into long format | |
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression") | |
# Calculate the mean expression levels for each gene in each region | |
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() | |
# Calculate the percentage total expressed | |
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len()) | |
count = 1 | |
dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len")) | |
dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len")) | |
dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total")) | |
dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer") | |
result = dff_5.select([ | |
pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null())) | |
.then(pl.col('len') / pl.col('total')*100) | |
.otherwise(None).alias("%"), | |
]) | |
result = result.with_columns(pl.col("%").fill_null(0)) | |
dff_5[["percentage"]] = result[["%"]] | |
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage")) | |
# Final part to join the percentage expressed and mean expression levels | |
# TO DO | |
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner") | |
# Order the dataframe on ascending categories | |
expression_means = expression_means.sort(col_chosen, descending=True) | |
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen) | |
category_counts = category_counts.sort(col_chosen) | |
fig_pie_db3 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn") | |
#labels = category_counts[col_chosen].to_list() | |
#values = category_counts["normalized_count"].to_list() | |
# Create the scatter plots | |
fig_scatter_db3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch', title="S-cycle gene:",template="seaborn") | |
fig_scatter_db3_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch', title="G2M-cycle gene:",template="seaborn") | |
fig_scatter_db3_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score", | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch', title="S score:",template="seaborn") | |
fig_scatter_db3_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score", | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch', title="G2M score:",template="seaborn") | |
# Sort values of custom in-between | |
dff = dff.sort(condition1_chosen) | |
fig_scatter_db3_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen, | |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='batch',template="seaborn") | |
fig_scatter_db3_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression", | |
size="percentage", size_max = 20, | |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name=col_chosen,template="seaborn") | |
fig_violin_db32 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all", | |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn") | |
return fig_violin_db3, fig_pie_db3, fig_scatter_db3, fig_scatter_db3_2, fig_scatter_db3_3, fig_scatter_db3_4, fig_scatter_db3_5, fig_scatter_db3_6, fig_scatter_db3_7, fig_scatter_db3_8, fig_scatter_db3_9, fig_scatter_db3_10, fig_scatter_db3_11, fig_scatter_db3_12, fig_violin_db32 | |
# Set http://localhost:5000/ in web browser | |
# Now create your regular FASTAPI application | |
#if __name__ == '__main__': | |
# app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) # |