Arts-of-coding commited on
Commit
c67e888
·
verified ·
1 Parent(s): 605945c

Create DLC_corg_week16.py

Browse files
Files changed (1) hide show
  1. pages/DLC_corg_week16.py +493 -0
pages/DLC_corg_week16.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
+ # Shoutout to Coding-with-Adam for the initial template of the project:
3
+ # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
+
5
+ import dash
6
+ from dash import dcc, html, Output, Input, callback
7
+ import plotly.express as px
8
+ import dash_callback_chain
9
+ import yaml
10
+ import polars as pl
11
+ import os
12
+ pl.enable_string_cache(False)
13
+
14
+ dash.register_page(__name__, location="sidebar")
15
+
16
+ dataset = "data10xflex/corg/DLC_corg_w16"
17
+
18
+ # Set custom resolution for plots:
19
+ config_fig = {
20
+ 'toImageButtonOptions': {
21
+ 'format': 'svg',
22
+ 'filename': 'custom_image',
23
+ 'height': 600,
24
+ 'width': 700,
25
+ 'scale': 1,
26
+ }
27
+ }
28
+ from adlfs import AzureBlobFileSystem
29
+ mountpount=os.environ['AZURE_MOUNT_POINT'],
30
+ AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
31
+ AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
32
+
33
+ # Load in config file
34
+ config_path = "./data/config.yaml"
35
+
36
+ # Add the read-in data from the yaml file
37
+ def read_config(filename):
38
+ with open(filename, 'r') as yaml_file:
39
+ config = yaml.safe_load(yaml_file)
40
+ return config
41
+
42
+ config = read_config(config_path)
43
+ path_parquet = config.get("path_parquet")
44
+ col_batch = config.get("col_batch")
45
+ col_features = config.get("col_features")
46
+ col_counts = config.get("col_counts")
47
+ col_mt = config.get("col_mt")
48
+
49
+ #filepath = f"az://{path_parquet}"
50
+
51
+ storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
52
+ #azfs = AzureBlobFileSystem(**storage_options )
53
+
54
+ # Load in multiple dataframes
55
+ df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
56
+
57
+ # Setup the app
58
+ #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
59
+ #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
60
+
61
+ #df = pl.read_parquet(filepath,storage_options=storage_options)
62
+ #df = pl.DataFrame()
63
+ #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
64
+ #df = df.rename({"__index_level_0__": "Unnamed: 0"})
65
+
66
+ #df1 = pl.read_parquet(filepath, storage_options=storage_options)
67
+
68
+ #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
69
+
70
+ #tab0_content = html.Div([
71
+ # html.Label("Dataset chosen"),
72
+ # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
73
+ # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
74
+ #])
75
+
76
+ #@app.callback(
77
+ # Input(component_id='dpdn1', component_property='value')
78
+ #)
79
+
80
+ #def update_filepath(dpdn1):
81
+ # global df
82
+ # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
83
+ # print("not identical filepath, chosing other")
84
+ # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
85
+ # df = df2
86
+ # return
87
+
88
+ #df = pl.read_parquet(filepath, storage_options=storage_options)
89
+ min_value = df[col_features].min()
90
+ max_value = df[col_features].max()
91
+
92
+ min_value_2 = df[col_counts].min()
93
+ min_value_2 = round(min_value_2)
94
+ max_value_2 = df[col_counts].max()
95
+ max_value_2 = round(max_value_2)
96
+
97
+ min_value_3 = df[col_mt].min()
98
+ min_value_3 = round(min_value_3, 1)
99
+ max_value_3 = df[col_mt].max()
100
+ max_value_3 = round(max_value_3, 1)
101
+
102
+ # Loads in the conditions specified in the yaml file
103
+
104
+ # Note: Future version perhaps all values from a column in the dataframe of the parquet file
105
+ # Note 2: This could also be a tsv of the categories and own specified colors
106
+ #conditions = df[col_batch].unique().to_list()
107
+ # Create the first tab content
108
+ # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
109
+
110
+ tab1_content = html.Div([
111
+ html.Label("Column chosen"),
112
+ dcc.Dropdown(id='dpdn2', value="batch", multi=False,
113
+ options=df.columns),
114
+ html.Label("N Genes by Counts"),
115
+ dcc.RangeSlider(
116
+ id='range-slider_db4-1',
117
+ step=250,
118
+ value=[min_value, max_value],
119
+ marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
120
+ ),
121
+ dcc.Input(id='min-slider_db4-1', type='number', value=min_value, debounce=True),
122
+ dcc.Input(id='max-slider_db4-1', type='number', value=max_value, debounce=True),
123
+ html.Label("Total Counts"),
124
+ dcc.RangeSlider(
125
+ id='range-slider_db4-2',
126
+ step=7500,
127
+ value=[min_value_2, max_value_2],
128
+ marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
129
+ ),
130
+ dcc.Input(id='min-slider_db4-2', type='number', value=min_value_2, debounce=True),
131
+ dcc.Input(id='max-slider_db4-2', type='number', value=max_value_2, debounce=True),
132
+ html.Label("Percent Mitochondrial Genes"),
133
+ dcc.RangeSlider(
134
+ id='range-slider_db4-3',
135
+ step=5,
136
+ min=0,
137
+ max=100,
138
+ value=[min_value_3, max_value_3],
139
+ ),
140
+ dcc.Input(id='min-slider_db4-3', type='number', value=min_value_3, debounce=True),
141
+ dcc.Input(id='max-slider_db4-3', type='number', value=max_value_3, debounce=True),
142
+ html.Div([
143
+ dcc.Graph(id='pie-graph_db4', figure={}, className='four columns',config=config_fig),
144
+ dcc.Graph(id='my-graph_db4', figure={}, clickData=None, hoverData=None,
145
+ className='four columns',config=config_fig
146
+ ),
147
+ dcc.Graph(id='scatter-plot_db4', figure={}, className='four columns',config=config_fig)
148
+ ]),
149
+ html.Div([
150
+ dcc.Graph(id='scatter-plot_db4-2', figure={}, className='four columns',config=config_fig)
151
+ ]),
152
+ html.Div([
153
+ dcc.Graph(id='scatter-plot_db4-3', figure={}, className='four columns',config=config_fig)
154
+ ]),
155
+ html.Div([
156
+ dcc.Graph(id='scatter-plot_db4-4', figure={}, className='four columns',config=config_fig)
157
+ ]),
158
+ ])
159
+
160
+ # Create the second tab content with scatter-plot_db4-5 and scatter-plot_db4-6
161
+ tab2_content = html.Div([
162
+ html.Div([
163
+ html.Label("S-cycle genes"),
164
+ dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
165
+ options=[
166
+ "MCM5",
167
+ "PCNA",
168
+ "TYMS",
169
+ "FEN1",
170
+ "MCM2",
171
+ "MCM4",
172
+ "RRM1",
173
+ "UNG",
174
+ "GINS2",
175
+ "MCM6",
176
+ "CDCA7",
177
+ "DTL",
178
+ "PRIM1",
179
+ "UHRF1",
180
+ "MLF1IP",
181
+ "HELLS",
182
+ "RFC2",
183
+ "RPA2",
184
+ "NASP",
185
+ "RAD51AP1",
186
+ "GMNN",
187
+ "WDR76",
188
+ "SLBP",
189
+ "CCNE2",
190
+ "UBR7",
191
+ "POLD3",
192
+ "MSH2",
193
+ "ATAD2",
194
+ "RAD51",
195
+ "RRM2",
196
+ "CDC45",
197
+ "CDC6",
198
+ "EXO1",
199
+ "TIPIN",
200
+ "DSCC1",
201
+ "BLM",
202
+ "CASP8AP2",
203
+ "USP1",
204
+ "CLSPN",
205
+ "POLA1",
206
+ "CHAF1B",
207
+ "BRIP1",
208
+ "E2F8"
209
+ ]),
210
+ html.Label("G2M-cycle genes"),
211
+ dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
212
+ options=[
213
+ 'HMGB2', 'CDK1', 'NUSAP1', 'UBE2C', 'BIRC5', 'TPX2', 'TOP2A', 'NDC80', 'CKS2', 'NUF2', 'CKS1B', 'MKI67', 'TMPO', 'CENPF', 'TACC3', 'FAM64A', 'SMC4', 'CCNB2', 'CKAP2L', 'CKAP2', 'AURKB', 'BUB1', 'KIF11', 'ANP32E', 'TUBB4B', 'GTSE1', 'KIF20B', 'HJURP', 'CDCA3', 'HN1', 'CDC20', 'TTK', 'CDC25C', 'KIF2C', 'RANGAP1', 'NCAPD2', 'DLGAP5', 'CDCA2', 'CDCA8', 'ECT2', 'KIF23', 'HMMR', 'AURKA', 'PSRC1', 'ANLN', 'LBR', 'CKAP5',
214
+ 'CENPE', 'CTCF', 'NEK2', 'G2E3', 'GAS2L3', 'CBX5', 'CENPA'
215
+ ]),
216
+ ]),
217
+ html.Div([
218
+ dcc.Graph(id='scatter-plot_db4-5', figure={}, className='three columns',config=config_fig)
219
+ ]),
220
+ html.Div([
221
+ dcc.Graph(id='scatter-plot_db4-6', figure={}, className='three columns',config=config_fig)
222
+ ]),
223
+ html.Div([
224
+ dcc.Graph(id='scatter-plot_db4-7', figure={}, className='three columns',config=config_fig)
225
+ ]),
226
+ html.Div([
227
+ dcc.Graph(id='scatter-plot_db4-8', figure={}, className='three columns',config=config_fig)
228
+ ]),
229
+ ])
230
+
231
+ # Create the second tab content with scatter-plot_db4-5 and scatter-plot_db4-6
232
+ tab3_content = html.Div([
233
+ html.Div([
234
+ html.Label("UMAP condition 1"),
235
+ dcc.Dropdown(id='dpdn5', value="batch", multi=False,
236
+ options=df.columns),
237
+ html.Label("UMAP condition 2"),
238
+ dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
239
+ options=df.columns),
240
+ html.Div([
241
+ dcc.Graph(id='scatter-plot_db4-9', figure={}, className='four columns',config=config_fig)
242
+ ]),
243
+ html.Div([
244
+ dcc.Graph(id='scatter-plot_db4-10', figure={}, className='four columns',config=config_fig)
245
+ ]),
246
+ html.Div([
247
+ dcc.Graph(id='scatter-plot_db4-11', figure={}, className='four columns',config=config_fig)
248
+ ]),
249
+ html.Div([
250
+ dcc.Graph(id='my-graph_db42', figure={}, clickData=None, hoverData=None,
251
+ className='four columns',config=config_fig
252
+ )
253
+ ]),
254
+ ]),
255
+ ])
256
+ # html.Div([
257
+ # dcc.Graph(id='scatter-plot_db4-12', figure={}, className='four columns',config=config_fig)
258
+ # ]),
259
+
260
+
261
+ tab4_content = html.Div([
262
+ html.Div([
263
+ html.Label("Multi gene"),
264
+ dcc.Dropdown(id='dpdn7', value=['PAX6', 'TP63', 'OTX2', 'SIX3', 'LHX2', 'SIX6', 'SOX2', 'PMEL',
265
+ 'RAX', 'SOX2', 'LIN28A', 'ABCG2', 'KRT8', 'KRT18', 'KRT7',
266
+ 'KRT19', 'COL1A2', 'AQP1', 'LUM', 'TFAP2A', 'HAND1', 'S100A9',
267
+ 'SPP1', 'TEK', 'FOXC2', 'PECAM1', 'SOX9'], multi=True,
268
+ options=df.columns),
269
+ ]),
270
+ html.Div([
271
+ dcc.Graph(id='scatter-plot_db4-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
272
+ ]),
273
+ ])
274
+
275
+ # Define the tabs layout
276
+ layout = html.Div([
277
+ html.H1(f'Dataset analysis dashboard: {dataset}'),
278
+ dcc.Tabs(id='tabs', style= {'width': 600,
279
+ 'font-size': '100%',
280
+ 'height': 50}, value='tab1',children=[
281
+ #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
282
+ dcc.Tab(label='QC', value='tab1', children=tab1_content),
283
+ dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
284
+ dcc.Tab(label='Custom', value='tab3', children=tab3_content),
285
+ dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
286
+ ]),
287
+ ])
288
+
289
+ # Define the circular callback
290
+ @callback(
291
+ Output("min-slider_db4-1", "value"),
292
+ Output("max-slider_db4-1", "value"),
293
+ Output("min-slider_db4-2", "value"),
294
+ Output("max-slider_db4-2", "value"),
295
+ Output("min-slider_db4-3", "value"),
296
+ Output("max-slider_db4-3", "value"),
297
+ Input("min-slider_db4-1", "value"),
298
+ Input("max-slider_db4-1", "value"),
299
+ Input("min-slider_db4-2", "value"),
300
+ Input("max-slider_db4-2", "value"),
301
+ Input("min-slider_db4-3", "value"),
302
+ Input("max-slider_db4-3", "value"),
303
+
304
+ )
305
+ def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
306
+ return min_1, max_1, min_2, max_2, min_3, max_3
307
+
308
+ @callback(
309
+ Output('range-slider_db4-1', 'value'),
310
+ Output('range-slider_db4-2', 'value'),
311
+ Output('range-slider_db4-3', 'value'),
312
+ Input('min-slider_db4-1', 'value'),
313
+ Input('max-slider_db4-1', 'value'),
314
+ Input('min-slider_db4-2', 'value'),
315
+ Input('max-slider_db4-2', 'value'),
316
+ Input('min-slider_db4-3', 'value'),
317
+ Input('max-slider_db4-3', 'value'),
318
+
319
+ )
320
+ def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
321
+ return [min_1, max_1], [min_2, max_2], [min_3, max_3]
322
+
323
+ @callback(
324
+ Output(component_id='my-graph_db4', component_property='figure'),
325
+ Output(component_id='pie-graph_db4', component_property='figure'),
326
+ Output(component_id='scatter-plot_db4', component_property='figure'),
327
+ Output(component_id='scatter-plot_db4-2', component_property='figure'),
328
+ Output(component_id='scatter-plot_db4-3', component_property='figure'),
329
+ Output(component_id='scatter-plot_db4-4', component_property='figure'), # Add this new scatter plot
330
+ Output(component_id='scatter-plot_db4-5', component_property='figure'),
331
+ Output(component_id='scatter-plot_db4-6', component_property='figure'),
332
+ Output(component_id='scatter-plot_db4-7', component_property='figure'),
333
+ Output(component_id='scatter-plot_db4-8', component_property='figure'),
334
+ Output(component_id='scatter-plot_db4-9', component_property='figure'),
335
+ Output(component_id='scatter-plot_db4-10', component_property='figure'),
336
+ Output(component_id='scatter-plot_db4-11', component_property='figure'),
337
+ Output(component_id='scatter-plot_db4-12', component_property='figure'),
338
+ Output(component_id='my-graph_db42', component_property='figure'),
339
+ Input(component_id='dpdn2', component_property='value'),
340
+ Input(component_id='dpdn3', component_property='value'),
341
+ Input(component_id='dpdn4', component_property='value'),
342
+ Input(component_id='dpdn5', component_property='value'),
343
+ Input(component_id='dpdn6', component_property='value'),
344
+ Input(component_id='dpdn7', component_property='value'),
345
+ Input(component_id='range-slider_db4-1', component_property='value'),
346
+ Input(component_id='range-slider_db4-2', component_property='value'),
347
+ Input(component_id='range-slider_db4-3', component_property='value'),
348
+
349
+ )
350
+
351
+ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
352
+ batch_chosen = df[col_chosen].unique().to_list()
353
+ dff = df.filter(
354
+ (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
355
+ (pl.col(col_features) >= range_value_1[0]) &
356
+ (pl.col(col_features) <= range_value_1[1]) &
357
+ (pl.col(col_counts) >= range_value_2[0]) &
358
+ (pl.col(col_counts) <= range_value_2[1]) &
359
+ (pl.col(col_mt) >= range_value_3[0]) &
360
+ (pl.col(col_mt) <= range_value_3[1])
361
+ )
362
+
363
+ #Drop categories that are not in the filtered data
364
+ dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
365
+
366
+ dff = dff.sort(col_chosen)
367
+
368
+ # Plot figures
369
+ fig_violin_db4 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
370
+ color=col_chosen, hover_name=col_chosen,template="seaborn")
371
+
372
+ # Cache commonly used subexpressions
373
+ total_count = pl.lit(len(dff))
374
+ category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
375
+ category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
376
+
377
+ # Sort the dataframe
378
+ #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
379
+
380
+ # Display the result
381
+ total_cells = total_count # Calculate total number of cells
382
+ pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
383
+
384
+ # Calculate the mean expression
385
+
386
+ # Melt wide format DataFrame into long format
387
+ # Specify batch column as string type and gene columns as float type
388
+ list_conds = condition3_chosen
389
+ list_conds += [col_chosen]
390
+ dff_pre = dff.select(list_conds)
391
+
392
+ # Melt wide format DataFrame into long format
393
+ dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
394
+
395
+ # Calculate the mean expression levels for each gene in each region
396
+ expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
397
+
398
+ # Calculate the percentage total expressed
399
+ dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
400
+ count = 1
401
+ dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
402
+ dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
403
+ dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
404
+ dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
405
+ result = dff_5.select([
406
+ pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
407
+ .then(pl.col('len') / pl.col('total')*100)
408
+ .otherwise(None).alias("%"),
409
+ ])
410
+ result = result.with_columns(pl.col("%").fill_null(0))
411
+ dff_5[["percentage"]] = result[["%"]]
412
+ dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
413
+
414
+ # Final part to join the percentage expressed and mean expression levels
415
+ # TO DO
416
+ expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
417
+
418
+ # Order the dataframe on ascending categories
419
+ expression_means = expression_means.sort(col_chosen, descending=True)
420
+
421
+ #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
422
+ category_counts = category_counts.sort(col_chosen)
423
+
424
+ fig_pie_db4 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
425
+
426
+ #labels = category_counts[col_chosen].to_list()
427
+ #values = category_counts["normalized_count"].to_list()
428
+
429
+ # Create the scatter plots
430
+ fig_scatter_db4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
431
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
432
+ hover_name='batch',template="seaborn")
433
+
434
+ fig_scatter_db4_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
435
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
436
+ hover_name='batch',template="seaborn")
437
+
438
+ fig_scatter_db4_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
439
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
440
+ hover_name='batch',template="seaborn")
441
+
442
+
443
+ fig_scatter_db4_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
444
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
445
+ hover_name='batch',template="seaborn")
446
+
447
+ fig_scatter_db4_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
448
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
449
+ hover_name='batch', title="S-cycle gene:",template="seaborn")
450
+
451
+ fig_scatter_db4_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
452
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
453
+ hover_name='batch', title="G2M-cycle gene:",template="seaborn")
454
+
455
+ fig_scatter_db4_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
456
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
457
+ hover_name='batch', title="S score:",template="seaborn")
458
+
459
+ fig_scatter_db4_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
460
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
461
+ hover_name='batch', title="G2M score:",template="seaborn")
462
+
463
+ # Sort values of custom in-between
464
+ dff = dff.sort(condition1_chosen)
465
+
466
+ fig_scatter_db4_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
467
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
468
+ hover_name='batch',template="seaborn")
469
+
470
+ fig_scatter_db4_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
471
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
472
+ hover_name='batch',template="seaborn")
473
+
474
+ fig_scatter_db4_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
475
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
476
+ hover_name='batch',template="seaborn")
477
+
478
+ fig_scatter_db4_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
479
+ size="percentage", size_max = 20,
480
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
481
+ hover_name=col_chosen,template="seaborn")
482
+
483
+ fig_violin_db42 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
484
+ color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
485
+
486
+
487
+ return fig_violin_db4, fig_pie_db4, fig_scatter_db4, fig_scatter_db4_2, fig_scatter_db4_3, fig_scatter_db4_4, fig_scatter_db4_5, fig_scatter_db4_6, fig_scatter_db4_7, fig_scatter_db4_8, fig_scatter_db4_9, fig_scatter_db4_10, fig_scatter_db4_11, fig_scatter_db4_12, fig_violin_db42
488
+
489
+ # Set http://localhost:5000/ in web browser
490
+ # Now create your regular FASTAPI application
491
+
492
+ #if __name__ == '__main__':
493
+ # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #