Arnaudding001 commited on
Commit
606aeb0
1 Parent(s): b1004b6

Create cli.py

Browse files
Files changed (1) hide show
  1. cli.py +110 -0
cli.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import pathlib
4
+ from urllib.parse import urlparse
5
+ import warnings
6
+ import numpy as np
7
+
8
+ import whisper
9
+
10
+ import torch
11
+ from app import LANGUAGES, WhisperTranscriber
12
+ from src.download import download_url
13
+
14
+ from src.utils import optional_float, optional_int, str2bool
15
+
16
+
17
+ def cli():
18
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
19
+ parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
20
+ parser.add_argument("--model", default="small", choices=["tiny", "base", "small", "medium", "large"], help="name of the Whisper model to use")
21
+ parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
22
+ parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
23
+ parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
24
+ parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
25
+
26
+ parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
27
+ parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES), help="language spoken in the audio, specify None to perform language detection")
28
+
29
+ parser.add_argument("--vad", type=str, default="none", choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], help="The voice activity detection algorithm to use")
30
+ parser.add_argument("--vad_merge_window", type=optional_float, default=5, help="The window size (in seconds) to merge voice segments")
31
+ parser.add_argument("--vad_max_merge_size", type=optional_float, default=30, help="The maximum size (in seconds) of a voice segment")
32
+ parser.add_argument("--vad_padding", type=optional_float, default=1, help="The padding (in seconds) to add to each voice segment")
33
+ parser.add_argument("--vad_prompt_window", type=optional_float, default=3, help="The window size of the prompt to pass to Whisper")
34
+
35
+ parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
36
+ parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
37
+ parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
38
+ parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
39
+ parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple lengt normalization by default")
40
+
41
+ parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
42
+ parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
43
+ parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
44
+ parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
45
+
46
+ parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
47
+ parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
48
+ parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
49
+ parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
50
+
51
+ args = parser.parse_args().__dict__
52
+ model_name: str = args.pop("model")
53
+ model_dir: str = args.pop("model_dir")
54
+ output_dir: str = args.pop("output_dir")
55
+ device: str = args.pop("device")
56
+ os.makedirs(output_dir, exist_ok=True)
57
+
58
+ if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
59
+ warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
60
+ args["language"] = "en"
61
+
62
+ temperature = args.pop("temperature")
63
+ temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
64
+ if temperature_increment_on_fallback is not None:
65
+ temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
66
+ else:
67
+ temperature = [temperature]
68
+
69
+ vad = args.pop("vad")
70
+ vad_merge_window = args.pop("vad_merge_window")
71
+ vad_max_merge_size = args.pop("vad_max_merge_size")
72
+ vad_padding = args.pop("vad_padding")
73
+ vad_prompt_window = args.pop("vad_prompt_window")
74
+
75
+ model = whisper.load_model(model_name, device=device, download_root=model_dir)
76
+ transcriber = WhisperTranscriber(deleteUploadedFiles=False)
77
+
78
+ for audio_path in args.pop("audio"):
79
+ sources = []
80
+
81
+ # Detect URL and download the audio
82
+ if (uri_validator(audio_path)):
83
+ # Download from YouTube/URL directly
84
+ for source_path in download_url(audio_path, maxDuration=-1, destinationDirectory=output_dir, playlistItems=None):
85
+ source_name = os.path.basename(source_path)
86
+ sources.append({ "path": source_path, "name": source_name })
87
+ else:
88
+ sources.append({ "path": audio_path, "name": os.path.basename(audio_path) })
89
+
90
+ for source in sources:
91
+ source_path = source["path"]
92
+ source_name = source["name"]
93
+
94
+ result = transcriber.transcribe_file(model, source_path, temperature=temperature,
95
+ vad=vad, vadMergeWindow=vad_merge_window, vadMaxMergeSize=vad_max_merge_size,
96
+ vadPadding=vad_padding, vadPromptWindow=vad_prompt_window, **args)
97
+
98
+ transcriber.write_result(result, source_name, output_dir)
99
+
100
+ transcriber.clear_cache()
101
+
102
+ def uri_validator(x):
103
+ try:
104
+ result = urlparse(x)
105
+ return all([result.scheme, result.netloc])
106
+ except:
107
+ return False
108
+
109
+ if __name__ == '__main__':
110
+ cli()