Spaces:
Runtime error
Runtime error
Arnaudding001
commited on
Commit
•
01c308f
1
Parent(s):
04dba48
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import whisper
|
4 |
+
from whisper import tokenizer
|
5 |
+
import time
|
6 |
+
|
7 |
+
current_size = 'base'
|
8 |
+
model = whisper.load_model(current_size)
|
9 |
+
AUTO_DETECT_LANG = "Auto Detect"
|
10 |
+
|
11 |
+
def transcribe(audio, state={}, model_size='base', delay=1.2, lang=None, translate=False):
|
12 |
+
time.sleep(delay - 1)
|
13 |
+
|
14 |
+
global current_size
|
15 |
+
global model
|
16 |
+
if model_size != current_size:
|
17 |
+
current_size = model_size
|
18 |
+
model = whisper.load_model(current_size)
|
19 |
+
|
20 |
+
transcription = model.transcribe(
|
21 |
+
audio,
|
22 |
+
language = lang if lang != AUTO_DETECT_LANG else None
|
23 |
+
)
|
24 |
+
state['transcription'] += transcription['text'] + " "
|
25 |
+
|
26 |
+
if translate:
|
27 |
+
x = whisper.load_audio(audio)
|
28 |
+
x = whisper.pad_or_trim(x)
|
29 |
+
mel = whisper.log_mel_spectrogram(x).to(model.device)
|
30 |
+
|
31 |
+
options = whisper.DecodingOptions(task = "translation")
|
32 |
+
translation = whisper.decode(model, mel, options)
|
33 |
+
|
34 |
+
state['translation'] += translation.text + " "
|
35 |
+
|
36 |
+
return state['transcription'], state['translation'], state, f"detected language: {transcription['language']}"
|
37 |
+
|
38 |
+
|
39 |
+
title = "OpenAI's Whisper Real-time Demo"
|
40 |
+
description = "A simple demo of OpenAI's [**Whisper**](https://github.com/openai/whisper) speech recognition model. This demo runs on a CPU. For faster inference choose 'tiny' model size and set the language explicitly."
|
41 |
+
|
42 |
+
model_size = gr.Dropdown(label="Model size", choices=['base', 'tiny', 'small', 'medium', 'large'], value='base')
|
43 |
+
|
44 |
+
delay_slider = gr.inputs.Slider(minimum=1, maximum=5, default=1.2, label="Rate of transcription")
|
45 |
+
|
46 |
+
available_languages = sorted(tokenizer.TO_LANGUAGE_CODE.keys())
|
47 |
+
available_languages = [lang.capitalize() for lang in available_languages]
|
48 |
+
available_languages = [AUTO_DETECT_LANG]+available_languages
|
49 |
+
|
50 |
+
lang_dropdown = gr.inputs.Dropdown(choices=available_languages, label="Language", default=AUTO_DETECT_LANG, type="value")
|
51 |
+
|
52 |
+
if lang_dropdown==AUTO_DETECT_LANG:
|
53 |
+
lang_dropdown=None
|
54 |
+
|
55 |
+
translate_checkbox = gr.inputs.Checkbox(label="Translate to English", default=False)
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
transcription_tb = gr.Textbox(label="Transcription", lines=10, max_lines=20)
|
60 |
+
translation_tb = gr.Textbox(label="Translation", lines=10, max_lines=20)
|
61 |
+
detected_lang = gr.outputs.HTML(label="Detected Language")
|
62 |
+
|
63 |
+
state = gr.State({"transcription": "", "translation": ""})
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
+
fn=transcribe,
|
67 |
+
inputs=[
|
68 |
+
gr.Audio(source="microphone", type="filepath", streaming=True),
|
69 |
+
state,
|
70 |
+
model_size,
|
71 |
+
delay_slider,
|
72 |
+
lang_dropdown,
|
73 |
+
translate_checkbox
|
74 |
+
],
|
75 |
+
outputs=[
|
76 |
+
transcription_tb,
|
77 |
+
translation_tb,
|
78 |
+
state,
|
79 |
+
detected_lang
|
80 |
+
],
|
81 |
+
live=True,
|
82 |
+
allow_flagging='never',
|
83 |
+
title=title,
|
84 |
+
description=description,
|
85 |
+
).launch(
|
86 |
+
# enable_queue=True,
|
87 |
+
# debug=True
|
88 |
+
)
|