File size: 2,239 Bytes
74f6cce
 
 
 
 
fb775d6
 
74f6cce
 
 
 
 
 
 
69b28a8
8a754c3
 
74f6cce
 
 
 
 
180058c
 
 
 
 
 
 
 
74f6cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline

#https://huggingface.co/spaces/lvwerra/codeparrot-generation

title = "SantaCoder+Stack Exchange Generator ๐ŸŽ…๐Ÿพ+๐Ÿ“š"
description = "This is a subspace to make code generation with [SantaCoder](https://huggingface.co/bigcode/santacoder) fine-tuned on [Stack Exchange](https://huggingface.co/datasets/ArmelR/stack-exchange-instruction). Feel free to check this larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for more information about code generation with ๐Ÿค—."

example = [
    ["def print_hello_world():", 8, 0.6, 42],
    ["def get_file_size(filepath):", 40, 0.6, 42],
    ["def count_lines(filename):", 40, 0.6, 42],
    ["def count_words(filename):", 40, 0.6, 42]]

checkpoint = "ArmelR/Stack10K2048"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True)


def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42):
    set_seed(seed)
    pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
    generated_text = pipe(
        gen_prompt, 
        do_sample=True, 
        top_p=0.95, 
        temperature=temperature, 
        max_new_tokens=max_tokens,
        eos_token_id=tokenizer.eos_token_id
    )[0]['generated_text']
    return generated_text


iface = gr.Interface(
    fn=code_generation, 
    inputs=[
        gr.Textbox(lines=10, label="Input code"),
        gr.inputs.Slider(
            minimum=8,
            maximum=256,
            step=1,
            default=8,
            label="Number of tokens to generate",
        ),
        gr.inputs.Slider(
            minimum=0,
            maximum=2,
            step=0.1,
            default=0.6,
            label="Temperature",
        ),
        gr.inputs.Slider(
            minimum=0,
            maximum=1000,
            step=1,
            default=42,
            label="Random seed to use for the generation"
        )
    ],
    outputs=gr.Textbox(label="Predicted code", lines=10),
    examples=example,
    layout="horizontal",
    theme="peach",
    description=description,
    title=title
)
iface.launch()