paint / app.py
Arigadam's picture
Update app.py
ed96843 verified
raw
history blame
2.78 kB
import gradio as gr
#from huggingface_hub import InferenceClient
import openai
from markdown import markdown
from markdownify import markdownify
openai.base_url = "https://text.pollinations.ai/openai"
openai.api_key = "aaa"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
system_message = """Привет! Ты должен рисовать и править рисунки по запросу пользователя. Для генерации ты должен написать промпт на английском для ИИ который будет генерировать картинку. Чтобы отобразить картинку в сообщении в месте где должна быть картинка напиши ![](https://image.pollinations.ai/prompt/{prompt}) где {prompt} Твой промпт. ГОВОРИ ПО-АНГЛИЙСКИ!"""
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": markdownify(val[1])})
messages.append({"role": "user", "content": message})
response = ""
response = openai.chat.completions.create(messages=messages, model="openai").choices[0].message.content
return markdown(response)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks() as demo:
gr.Markdown("# Painter")
gr.Markdown("⚠️WARNING⚠️: The picture will not be displayed immediately. It will be displayed when generated. DO NOT TELL ME THAT THERE IS NO PICTURE!!! Thank you for your attention.")
gr.ChatInterface(
#title="Painter",
#description="""⚠️WARNING⚠️: The picture will not be displayed immediately. It will be displayed when generated. DO NOT TELL ME THAT THERE IS NO PICTURE!!! Thank you for your attention.""",
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
gr.HTML("<small>Made by Arigadam</small>")
if __name__ == "__main__":
demo.launch()