File size: 160,000 Bytes
fad7554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Asus\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd  \n",
    "import numpy as np  \n",
    "import seaborn as sns  \n",
    "import matplotlib as plt\n",
    "import gradio as gr  \n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,recall_score,f1_score\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "data = pd.read_csv(\"../career-recommendation-system/Dataset/mldata.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(6901, 20)\n"
     ]
    }
   ],
   "source": [
    "print(data.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 6901 entries, 0 to 6900\n",
      "Data columns (total 20 columns):\n",
      " #   Column                               Non-Null Count  Dtype \n",
      "---  ------                               --------------  ----- \n",
      " 0   Logical quotient rating              6901 non-null   int64 \n",
      " 1   hackathons                           6901 non-null   int64 \n",
      " 2   coding skills rating                 6901 non-null   int64 \n",
      " 3   public speaking points               6901 non-null   int64 \n",
      " 4   self-learning capability?            6901 non-null   object\n",
      " 5   Extra-courses did                    6901 non-null   object\n",
      " 6   certifications                       6901 non-null   object\n",
      " 7   workshops                            6901 non-null   object\n",
      " 8   reading and writing skills           6901 non-null   object\n",
      " 9   memory capability score              6901 non-null   object\n",
      " 10  Interested subjects                  6901 non-null   object\n",
      " 11  interested career area               6901 non-null   object\n",
      " 12  Type of company want to settle in?   6901 non-null   object\n",
      " 13  Taken inputs from seniors or elders  6901 non-null   object\n",
      " 14  Interested Type of Books             6901 non-null   object\n",
      " 15  Management or Technical              6901 non-null   object\n",
      " 16  hard/smart worker                    6901 non-null   object\n",
      " 17  worked in teams ever?                6901 non-null   object\n",
      " 18  Introvert                            6901 non-null   object\n",
      " 19  Suggested Job Role                   6901 non-null   object\n",
      "dtypes: int64(4), object(16)\n",
      "memory usage: 1.1+ MB\n"
     ]
    }
   ],
   "source": [
    "data.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "List of numerical features: \n",
      " ['Logical quotient rating', 'hackathons', 'coding skills rating', 'public speaking points']\n",
      "List of categorical features: \n",
      " ['self-learning capability?', 'Extra-courses did', 'certifications', 'workshops', 'reading and writing skills', 'memory capability score', 'Interested subjects', 'interested career area ', 'Type of company want to settle in?', 'Taken inputs from seniors or elders', 'Interested Type of Books', 'Management or Technical', 'hard/smart worker', 'worked in teams ever?', 'Introvert', 'Suggested Job Role']\n"
     ]
    }
   ],
   "source": [
    "print(\"List of numerical features: \\n\", data.select_dtypes(include=\"int\").columns.tolist())  \n",
    "print(\"List of categorical features: \\n\", data.select_dtypes(include=\"object\").columns.tolist())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Logical quotient rating                0\n",
       "hackathons                             0\n",
       "coding skills rating                   0\n",
       "public speaking points                 0\n",
       "self-learning capability?              0\n",
       "Extra-courses did                      0\n",
       "certifications                         0\n",
       "workshops                              0\n",
       "reading and writing skills             0\n",
       "memory capability score                0\n",
       "Interested subjects                    0\n",
       "interested career area                 0\n",
       "Type of company want to settle in?     0\n",
       "Taken inputs from seniors or elders    0\n",
       "Interested Type of Books               0\n",
       "Management or Technical                0\n",
       "hard/smart worker                      0\n",
       "worked in teams ever?                  0\n",
       "Introvert                              0\n",
       "Suggested Job Role                     0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "self-learning capability?\n",
      "yes    3496\n",
      "no     3405\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Extra-courses did\n",
      "no     3529\n",
      "yes    3372\n",
      "Name: count, dtype: int64\n",
      "\n",
      "certifications\n",
      "r programming           803\n",
      "information security    785\n",
      "shell programming       783\n",
      "machine learning        783\n",
      "full stack              768\n",
      "hadoop                  764\n",
      "python                  756\n",
      "distro making           740\n",
      "app development         719\n",
      "Name: count, dtype: int64\n",
      "\n",
      "workshops\n",
      "database security    897\n",
      "system designing     891\n",
      "web technologies     891\n",
      "hacking              867\n",
      "testing              852\n",
      "data science         842\n",
      "game development     831\n",
      "cloud computing      830\n",
      "Name: count, dtype: int64\n",
      "\n",
      "reading and writing skills\n",
      "excellent    2328\n",
      "medium       2315\n",
      "poor         2258\n",
      "Name: count, dtype: int64\n",
      "\n",
      "memory capability score\n",
      "medium       2317\n",
      "excellent    2303\n",
      "poor         2281\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Interested subjects\n",
      "Software Engineering     731\n",
      "IOT                      722\n",
      "cloud computing          721\n",
      "programming              716\n",
      "networks                 713\n",
      "Computer Architecture    703\n",
      "data engineering         672\n",
      "hacking                  663\n",
      "Management               644\n",
      "parallel computing       616\n",
      "Name: count, dtype: int64\n",
      "\n",
      "interested career area \n",
      "system developer            1178\n",
      "security                    1177\n",
      "Business process analyst    1154\n",
      "developer                   1145\n",
      "testing                     1128\n",
      "cloud computing             1119\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Type of company want to settle in?\n",
      "Service Based                        725\n",
      "Web Services                         719\n",
      "BPA                                  711\n",
      "Testing and Maintainance Services    698\n",
      "Product based                        695\n",
      "Finance                              694\n",
      "Cloud Services                       692\n",
      "product development                  669\n",
      "Sales and Marketing                  658\n",
      "SAaS services                        640\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Taken inputs from seniors or elders\n",
      "yes    3501\n",
      "no     3400\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Interested Type of Books\n",
      "Guide                    405\n",
      "Health                   401\n",
      "Self help                377\n",
      "Horror                   377\n",
      "Biographies              219\n",
      "Science fiction          218\n",
      "Satire                   212\n",
      "Childrens                212\n",
      "Autobiographies          210\n",
      "Prayer books             207\n",
      "Fantasy                  205\n",
      "Journals                 203\n",
      "Trilogy                  203\n",
      "Anthology                202\n",
      "Encyclopedias            201\n",
      "Drama                    201\n",
      "Mystery                  200\n",
      "History                  199\n",
      "Science                  198\n",
      "Dictionaries             198\n",
      "Diaries                  197\n",
      "Religion-Spirituality    197\n",
      "Action and Adventure     193\n",
      "Poetry                   193\n",
      "Cookbooks                186\n",
      "Comics                   186\n",
      "Art                      186\n",
      "Travel                   186\n",
      "Series                   180\n",
      "Math                     176\n",
      "Romance                  173\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Management or Technical\n",
      "Management    3461\n",
      "Technical     3440\n",
      "Name: count, dtype: int64\n",
      "\n",
      "hard/smart worker\n",
      "smart worker    3523\n",
      "hard worker     3378\n",
      "Name: count, dtype: int64\n",
      "\n",
      "worked in teams ever?\n",
      "no     3470\n",
      "yes    3431\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Introvert\n",
      "yes    3544\n",
      "no     3357\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Suggested Job Role\n",
      "Network Security Engineer                    630\n",
      "Software Engineer                            590\n",
      "UX Designer                                  589\n",
      "Software Developer                           587\n",
      "Database Developer                           581\n",
      "Software Quality Assurance (QA) / Testing    571\n",
      "Web Developer                                570\n",
      "CRM Technical Developer                      567\n",
      "Technical Support                            565\n",
      "Systems Security Administrator               562\n",
      "Applications Developer                       551\n",
      "Mobile Applications Developer                538\n",
      "Name: count, dtype: int64\n",
      "\n"
     ]
    }
   ],
   "source": [
    "categorical_cols = data[['self-learning capability?', 'Extra-courses did', 'certifications', 'workshops', 'reading and writing skills', 'memory capability score', 'Interested subjects', 'interested career area ', 'Type of company want to settle in?', 'Taken inputs from seniors or elders', 'Interested Type of Books', 'Management or Technical', 'hard/smart worker', 'worked in teams ever?', 'Introvert', 'Suggested Job Role']]\n",
    "numerical_cols = data[['Logical quotient rating', 'hackathons', 'coding skills rating', 'public speaking points']]\n",
    "\n",
    "for i in categorical_cols:\n",
    "    print(data[i].value_counts(), end=\"\\n\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Logical quotient rating\n",
      "6    799\n",
      "9    784\n",
      "2    782\n",
      "5    773\n",
      "3    772\n",
      "4    759\n",
      "1    756\n",
      "7    752\n",
      "8    724\n",
      "Name: count, dtype: int64\n",
      "\n",
      "hackathons\n",
      "5    1033\n",
      "2    1026\n",
      "0    1010\n",
      "6     989\n",
      "3     966\n",
      "1     952\n",
      "4     925\n",
      "Name: count, dtype: int64\n",
      "\n",
      "coding skills rating\n",
      "4    787\n",
      "5    777\n",
      "2    776\n",
      "6    774\n",
      "8    767\n",
      "7    766\n",
      "9    761\n",
      "3    755\n",
      "1    738\n",
      "Name: count, dtype: int64\n",
      "\n",
      "public speaking points\n",
      "7    807\n",
      "1    799\n",
      "8    777\n",
      "2    770\n",
      "3    766\n",
      "4    760\n",
      "9    758\n",
      "6    740\n",
      "5    724\n",
      "Name: count, dtype: int64\n",
      "\n"
     ]
    }
   ],
   "source": [
    "for j in numerical_cols:\n",
    "    print(data[j].value_counts(), end=\"\\n\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<svg  width=\"550\" height=\"55\"><rect x=\"0\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#a1c9f4;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"55\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#ffb482;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"110\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#8de5a1;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"165\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#ff9f9b;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"220\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#d0bbff;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"275\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#debb9b;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"330\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#fab0e4;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"385\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#cfcfcf;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"440\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#fffea3;stroke-width:2;stroke:rgb(255,255,255)\"/><rect x=\"495\" y=\"0\" width=\"55\" height=\"55\" style=\"fill:#b9f2f0;stroke-width:2;stroke:rgb(255,255,255)\"/></svg>"
      ],
      "text/plain": [
       "[(0.6313725490196078, 0.788235294117647, 0.9568627450980393),\n",
       " (1.0, 0.7058823529411765, 0.5098039215686274),\n",
       " (0.5529411764705883, 0.8980392156862745, 0.6313725490196078),\n",
       " (1.0, 0.6235294117647059, 0.6078431372549019),\n",
       " (0.8156862745098039, 0.7333333333333333, 1.0),\n",
       " (0.8705882352941177, 0.7333333333333333, 0.6078431372549019),\n",
       " (0.9803921568627451, 0.6901960784313725, 0.8941176470588236),\n",
       " (0.8117647058823529, 0.8117647058823529, 0.8117647058823529),\n",
       " (1.0, 0.996078431372549, 0.6392156862745098),\n",
       " (0.7254901960784313, 0.9490196078431372, 0.9411764705882353)]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sns.set_theme(style=\"darkgrid\")\n",
    "Palette = sns.color_palette(\"pastel\")\n",
    "Palette\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Asus\\AppData\\Local\\Temp\\ipykernel_21412\\4210140923.py:3: FutureWarning: \n",
      "\n",
      "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n",
      "\n",
      "  sns.countplot( data[\"Suggested Job Role\"], palette=sns.color_palette(\"pastel\"))\n",
      "C:\\Users\\Asus\\AppData\\Local\\Temp\\ipykernel_21412\\4210140923.py:3: UserWarning: \n",
      "The palette list has fewer values (10) than needed (12) and will cycle, which may produce an uninterpretable plot.\n",
      "  sns.countplot( data[\"Suggested Job Role\"], palette=sns.color_palette(\"pastel\"))\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<Axes: xlabel='count', ylabel='Suggested Job Role'>"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAG1CAYAAADUVkT8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/AElEQVR4nOzdeVyN+fv48dcpQknKLhFGYUhlyRJSmZFlkLHLkC2G7DP6GkOWsWQpYayNfRey7zIysq9JMyG7CZESqXN+f/h1fxwVJzJZrufj0ePTue/7vN/Xuc6Zj3P1Xm6VRqPRIIQQQgghhBBfEL2cDkAIIYQQQggh/mtSCAkhhBBCCCG+OFIICSGEEEIIIb44UggJIYQQQgghvjhSCAkhhBBCCCG+OFIICSGEEEIIIb44UggJIYQQQgghvjhSCAkhhBBCCCG+OFIICSGEEEIIIb44uXI6ACGE+FhpNBrUak1Oh/FJ0NNTSa50JLnSneRKd5Ir3UmudPcp5kpPT4VKpdLpWimEhBAiEyqVivj4p6SkqHM6lI9arlx6mJoaSa50ILnSneRKd5Ir3UmudPep5srMzAh9fSmEhBDivenrywzit0nLkeTq7SRXupNc6U5ypbuPPVdqtcxE+C+pNBqNZFsIITKg0Wh0Hl4XQggh3pdarSEuLvGjKIbSRoTi4hI/wREh3QpdGRESQohMqFQqwqPjeZKUmtOhCCGE+MwZ59PHoXyBT3JdzqdKCiEhhHiDJ0mpPHqaktNhCCGEECKbfZwTJIUQQgghhBDiA5JCSAghhBBCCPHFkUJICCGEEEII8cWRQkgIIYQQQgjxxZFCSHw0EhISqFatGnXr1uXFixfZ3r6zszOBgYEABAcHY21tnW1tx8XFsW7dOuWxh4cHI0aMyLb2syo8PBxra2vlp2LFitjZ2eHu7s6aNWv4r3fNz+l8CCGEEEK8TnaNEx+Nbdu2UahQIWJjY9mzZw9Nmzb9YH01bdqU+vXrZ1t7U6ZM4ebNm7Rt2xaAwMBA9PX1s639d7Vu3TpKlCiBWq0mPj6e/fv3M27cOG7fvs3gwYNzOjwhhBBCiBwjhZD4aGzYsIH69etz+/ZtVq9e/UELobx585I3b95sa+/1EZaCBQtmW9vvw8zMjCJFigBQrFgxKlSogIGBAX5+frRs2ZJy5crlcIRCCCGEEDlDpsaJj0J0dDRnz56lXr16fPPNN4SHh3P16lXlvLOzM3PmzKFHjx7Y2NjQuHFjralowcHBNGjQgLVr1+Lo6IidnR0//vgj9+7dy7C/16fGJSYmMm7cOOW5Xbp04cKFC8r5devW0aJFC2xsbLC1taVTp06cP38egBEjRrBx40aOHTumtPn6VLDTp0/TtWtXqlevjoODAz4+PsTFxWm9vkWLFjFgwADs7OxwcHBg/PjxpKS8vH9Namoqfn5+NGzYkCpVqtCkSRNWrVr1Trlu164duXPnZseOHcqxU6dO0blzZ2xsbHBycsLX15eEhATg5eiWo6MjavX/7iqdlJSEnZ2d8h5ER0fTq1cv7OzscHR0ZOjQocTGxmYaQ3R0NF5eXjg4OFC9enW8vb25deuWct7Dw4MJEyYwZMgQqlWrRoMGDZg/f75Wwfm2Pj08PBg1ahRt27alRo0ahISEvFO+hBBCCPF5kkJIfBTWr1+PoaEhDRo0oHHjxuTOnZvVq1drXTNnzhzs7OzYtGkTnTt35tdff2X79u3K+YcPH7JkyRL8/f1ZsmQJd+7coWfPnkox8SaDBg3i0KFDTJw4kU2bNmFhYYGnpyePHz9mz549jB07lp49e7Jjxw4WL17M8+fP+eWXXwAYOXIkbm5u2NnZcfjw4XRtnzt3Dg8PDypUqMDatWsJCAjg7Nmz9OjRg9TUVOW6gIAAatasSUhICD/99BPLly9n69atAKxcuZKdO3cyY8YMdu3aRZcuXRgzZgwnTpzIcq6NjIwoVaoUly9fBiAyMpLu3btTv359QkJCmDp1KhcvXsTT0xONRkOrVq24f/8+4eHhSht79+5Fo9Hg5ubGvXv36NSpE2XKlGH9+vXMnTuXhIQE2rdvz9OnT9P1f+vWLdq3b4+BgQFLliwhKCiI2NhYunTpohRfAKtWrcLY2Jjg4GAGDx7M7NmzWbBgAYDOfa5bt46uXbuycuXKbJ0KKYQQQohPnxRCIselpKQQEhKCs7MzefPmpWDBgjg6OrJp0yaeP3+uXOfo6Ej//v0pV64c3bp1o0mTJixZskQ5/+LFCyZPnkyNGjWwsbHBz8+PqKgo/vrrrzf2f+XKFQ4dOsTo0aOpX78+ZcqUYcyYMbRu3Zq4uDgKFizIhAkTaNmyJebm5tja2vL9998TFRUFgLGxMXnz5iV37tzKNLRXBQUFYW1tzahRoyhfvjy1a9dm+vTpXLx4UatwcnR0pGvXrlhYWNCmTRsqVqzIqVOnALh+/TqGhoaUKlUKc3NzunTpwh9//EHZsmXfKefGxsY8efIEgEWLFlGvXj28vLywtLSkRo0aTJs2jbNnz3Ls2DEsLCyUAi3Nli1bcHV1JX/+/KxatYrixYvzyy+/UL58eapUqYK/vz8PHjxg586d6fpeuXIlhoaGTJ06lYoVK1KtWjVmzpzJgwcP2Lx5s3Jd2bJlGTNmDOXLl6d169Z4eHiwdOlSNBqNzn1WqlSJFi1aYGVlhamp6TvlSgghhBCfJ1kjJHJcaGgo9+/fp1mzZsqxZs2aceDAAXbs2EGrVq0AcHBw0HqenZ0dBw8eVB4bGRlRpUoV5XH58uUxMTEhKirqjaMBaQWNra2tcixPnjz4+PgAYGlpSXR0NLNnz+bKlSvExMRw+fJlralibxIVFUW9evW0jlWsWBFjY2MuX75Mw4YNlXhfZWxsrOye17lzZ/bu3UvDhg2pVKkS9erVo1mzZhQqVEinGF6XkJBA0aJFAYiIiCAmJgY7O7t010VHR+Pg4ECbNm0YN24cY8aMITExkbCwMGV0JiIigr///jvd858/f050dHSG+ahSpQoGBgbKsSJFilC2bFnlvYCX77dKpVIe29nZsWDBAuLi4nTus0yZMllJixBCCCG+IFIIiRwXHBwMQP/+/dOdW716tVII5cql/XFVq9Xo6f1vUDN37tzpnp+amvrW3dteb/d1W7ZsYcSIEbRo0QJ7e3s6dOhAVFQUY8eOfePz0mS2VbVGo9GK+dXC4PXnWlpasnv3bo4dO0ZYWBgHDx5kwYIFTJw4kdatW+sUR5rExESuXr1K8+bNgZd5bNGiBV5eXumuNTMzA+Cbb77B19eXAwcOcP/+fYoUKULt2rWV59euXZvRo0ene76xsXGmr+l1arVaKx8Zvd8A+vr6OveZnRtiCCGEEOLzIlPjRI568OABoaGhuLu7s2nTJq2fNm3acPr0aWWUIG1zgjSnTp2icuXKyuNHjx5x48YN5fHff/9NQkKC1jUZSRuJebX9lJQUnJ2d2blzJ/Pnz+f7779n0qRJdO7cmZo1ayr9pH2pf3Xk4nXW1tacPHlS61hkZCQJCQnpRoEys3TpUnbv3k29evX46aef2LJlC3Xq1NFaI6WrtWvXotFolF35KlSowD///EOZMmWUn5SUFCZOnMidO3cAMDQ0xM3Njd27d7Nt2zZatmypFKEVKlQgOjqaEiVKKM83MTHht99+0xrheTUf58+fJzk5WTl2//59YmJitPKR0ftdqlQpTExMstynEEIIIcTrpBASOSokJISUlBR69eqFlZWV1o+Xlxd6enrKpgnbtm1jxYoVXLt2jYULF7Jnzx569uyp1d7w4cO5cOECZ86c4aeffsLOzo6aNWu+MYayZcsqIx5Hjx7l6tWrjBo1iufPn1OrVi1KlCjBqVOnuHjxItevX2fx4sUsX74cQPkyb2hoyL///qtViKXp3r07ly9fZty4cURHRxMeHs6wYcOoXLkyderU0SlPDx8+ZOzYsezbt49bt27x559/cunSpQyns73+vNjYWP7991/+/vtvFixYwPTp0/Hy8qJ06dIAeHp6EhERga+vL9HR0Zw+fZqhQ4dy7do1LC0tlbbc3d05cOAAZ86cwd3dXTneqVMnnjx5wrBhw4iMjCQyMpLBgwdz/vx5rKys0sXUsWNHEhMTGT58OJGRkZw7d46BAwdiamqqNT3yxIkTzJw5k2vXrrF+/XpWrFihvN9Z7VMIIYQQ4nUyNU7kqODgYOrWrZvh/WxKly6Nq6srISEh5MqVi9atW7Nnzx4mTZqEpaUl/v7+yvqaNC1atKB3794kJyfj7OzMyJEj3zhak+a3335jypQpDBw4kOTkZKpVq8aiRYswMzNj1KhR/Prrr3Tp0gUDAwMqVqzIlClTlC/eNWrUoFWrVuzZs4fmzZuze/durbarVavGwoUL8ff3p1WrVuTPnx9XV1eGDh2a4XS+jPTv358XL14wfvx4YmNjKVKkCB07dqRPnz5vfF7aDV7hZbFWuXJlJk+erHWPJltbWxYuXEhAQACtW7fG0NCQOnXq8PPPP2tN16tRowZFihShUKFCWmtvLCwsWL58OdOmTaNjx47o6+tjb2/P0qVLlal1rypVqhTLly/Hz89P2T2uXr16+Pn5UaBAAeU6FxcXoqOj+e677yhatCg+Pj507NjxnfoUQgghhHidSpPZhH0hPiLOzs60bt2aAQMGZHg+ODgYHx8fZUto8Wnz8PDA3NycSZMm5XQo7L0Qx6Onb9+CXQghhHgfBQ1z4VrFlLi4RFJSdNuQ6UPKlUsPU1OjjyYeXZmZGaGvr9ukN5kaJ4QQQgghhPjiSCEkhBBCCCGE+OLI1DghhHgDmRonhBDivyBT47KHTI0TQgghhBBCiDeQXeOEEOINjPO9+Ya8QgghRHaQf2/+e1IICSFEJjQaDQ7lC7z9QiGEECIbqNUa1GpZtfJfkUJICCEyoVKpiI9PIjX105kbnRP09fUoUCCf5EoHkivdSa50J7nS3ceeKymE/ltSCAkhxBukpqo/qUWiOUlypTvJle4kV7qTXOlOciVANksQQgghhBBCfIGkEBJCCCGEEEJ8caQQEkIIIYQQQnxxZI2QEEK8ga43ZfuSpeVIcvV2kivdSa50J7nS3eeWK9lc4f2oNBqNZE8IITKg0WhQqVQ5HYYQQgiRIY1azcO4px+kGMqVSw9TUyPi4hI/qY0lzMyMdC50ZURICCEyoVKpSDy7C3ViXE6HIoQQQmjRMzLFqNq36OmpZFToHUkhJIQQb6BOjCM1PjanwxBCCCFENvs8JkgKIYQQQgghRBZIISSEEEIIIYT44kghJIQQQgghhPjiSCEkhBBCCCGE+OJIISSyLCUlhSVLluDu7o6dnR21a9fG09OTo0ePal3n4eGBtbW11k+VKlVwcnJi7NixJCUlpbt2/PjxGfY5f/58rK2tGTFiRIbnnZ2d0/X16o+Hh8d7veYRI0Z8FG2kuXnzJtbW1oSHh2d4Pjw8XOv1V6xYETs7O9zd3VmzZg3/9a75Hh4emb53QgghhBA5QXaNE1ny/Plzunfvzp07d/D29sbOzo5nz56xYcMGunfvzpQpU2jRooVyvZubGyNHjlQeP336lMOHDzNx4kTUajVjxoxRzuXOnZvdu3czcuTIdPdu2b59+xvv57J+/XpSU1MBOH36NAMGDGDdunWUKFFCaTunjRw5Uonxv5KWA7VaTXx8PPv372fcuHHcvn2bwYMH/6exCCGEEEJ8TKQQElkSEBDA5cuX2bp1q1JkwMsv+QkJCYwfPx5nZ2eMjIwAyJs3L0WKFNFqo0yZMly4cIHt27drFUIODg4cOXKEU6dOUb16deX41atXuXbtGl9//XWmcZmZmSm/m5iYKMde7zsnGRsb/+d9vpqDYsWKUaFCBQwMDPDz86Nly5aUK1fuP49JCCGEEOJjIFPjhM5evHjBhg0bcHd31yqC0gwaNIgFCxaQN2/et7aVJ08ecuXSrsOLFClCjRo12Llzp9bx7du34+TkhKGh4TvHrtFoWLBgAS4uLlSrVo2WLVsSEhKidU1MTAx9+/alevXqODg4MGTIEB48eKCcf/HiBZMnT6Z27drY2trSr18/7t+/D/xvqtquXbto27YtVapUwdnZmTVr1ijPf31q3Jv6S05OZvLkyTg7O1OlShVq1arFwIEDefjw4TvnIE27du3InTs3O3bsUI6dOnWKzp07Y2Njg5OTE76+viQkJAAQGBiIo6MjavX/7iqdlJSEnZ0d69atAyA6OppevXphZ2eHo6MjQ4cOJTY283vvREdH4+XlhYODA9WrV8fb25tbt24p5z08PJgwYQJDhgyhWrVqNGjQgPnz52tN6Xtbnx4eHowaNYq2bdtSo0aNdO+3EEIIIb5sUggJnd24cYNHjx5hb2+f4flixYphY2ODvr5+pm2kpKRw8OBBNm/eTMuWLdOdd3NzY/fu3VpfeHfs2EGzZs3eK/YZM2awatUqRo0axZYtW+jatStjxoxhxYoVAMTHx9O5c2eSk5NZsmQJf/zxB9evX2fQoEFKG6dPnyY+Pp6VK1cyb948zpw5w5QpU7T6mThxIl5eXuzYsQMnJyfGjBnDjRs30sXztv6mTJnC7t27mTRpErt27WLSpEkcPXqU33///b3yAGBkZESpUqW4fPkyAJGRkXTv3p369esTEhLC1KlTuXjxIp6enmg0Glq1asX9+/e11iPt3bsXjUaDm5sb9+7do1OnTpQpU4b169czd+5cEhISaN++PU+fPk3X/61bt2jfvj0GBgYsWbKEoKAgYmNj6dKli1J8AaxatQpjY2OCg4MZPHgws2fPZsGCBQA697lu3Tq6du3KypUrqV+//nvnTgghhBCfD5kaJ3T2+PFj4H9Tz3SxZcsWdu3apTx+9uwZJUuWpEePHnh5eaW7/ttvv2X8+PGcPn0ae3t7oqKiuHPnDg0bNmTp0qXvFPfTp09ZvHgx06dPx8nJCYDSpUtz69YtFi1aROfOndm+fTuJiYlMnz5deX3jx49n27ZtJCcnAy9HrMaNG4eenh7lypWjadOmHDlyRKuvbt264eLiAsDgwYNZsWIFZ8+excLCQuu6t/VXtWpVmjRpQo0aNQAwNzenbt26REVFvVMOXmdsbMyTJ08AWLRoEfXq1VPeD0tLS6ZNm4arqyvHjh3DwcGBmjVrEhISQp06dYCX76urqyv58+dn4cKFFC9enF9++UVp39/fn9q1a7Nz507c3d21+l65ciWGhoZMnToVAwMDAGbOnImLiwubN2+mc+fOAJQtW5YxY8agUqkoX7480dHRLF26lF69erFq1Sqd+qxUqZLWmjUhhBBCiDRSCAmdpa3DefTokc7PcXZ2ZtiwYWg0Gs6dO8eECROoW7cuXl5e6abGARQqVIiaNWuya9cu7O3t2b59O40bN1a+ML+Lf/75h+fPnzN06FD09P43CJqSkkJycjLPnj0jKioKS0tLrSKvYsWKVKxYUXlcunRpreebmJjw7Nkzrb7Kly+v/J62JujFixfpYnpbfy1btuTIkSNMnTqVa9euceXKFa5evaoURu8rISGBokWLAhAREUFMTAx2dnbprouOjsbBwYE2bdowbtw4xowZQ2JiImFhYcroTEREBH///Xe65z9//pzo6OgMX3uVKlW03tMiRYpQtmxZrULPwcFBa4MMOzs7FixYQFxcnM59lilTJitpEUIIIcQXRAohoTMLCwsKFy7MqVOnaNq0abrz0dHRTJgwAR8fHypUqAC8nIaV9mXU0tKSokWL0r17d/T19bU2SnhV06ZN+f333xkxYgQ7duzQ2nXuXaRNs/P3989wcwADA4MMi7LXvWnK36ttZdb/q97W36+//squXbto1aoVzs7O/PjjjyxatIh79+69NYa3SUxM5OrVqzRv3hwAtVpNixYtMhyhSyt+v/nmG3x9fTlw4AD379+nSJEi1K5dW3l+7dq1GT16dLrnZ7RBRGZbd6vVaq3d/V7PUdoaJX19fZ371GW9mhBCCCG+TLJGSOhMT0+P77//nuDgYO7cuZPu/MKFCzl//jzm5uaZtlG7dm26d+/OqlWrOHToUIbXNG7cmNjYWNasWcPjx4+pW7fue8Vdrlw5cuXKxe3btylTpozyExoayqJFi9DT0+Orr77i2rVrynQxgIsXL1KnTh3u3r37Xv1n5E393bp1izVr1jB69Gh8fHxwd3enUqVKXLlyJVvu/7N27Vo0Go1SzFaoUIF//vlHKzcpKSlMnDhReZ8NDQ2V9Vvbtm2jZcuWyuhYhQoViI6OpkSJEsrzTUxM+O233zKcymdtbc358+eVKYcA9+/fJyYmRmtE7fz581rPO3XqFKVKlcLExCTLfQohhBBCvE4KIZElXl5eWFpa0qlTJzZt2sT169c5d+4cPj4+bNq0iXHjxr11d7eBAwdiaWmpTLN6nZmZGQ4ODvj5+fHNN9/oNFrzJsbGxnTo0IGAgAA2b97MjRs3WL9+PX5+fsr0sBYtWmBiYsLw4cOJjIzkwoULjB49GisrK4oXL/5e/WfkTf0VLVoUY2Nj9u3bR0xMDJcvX2bUqFFcvHhRq3jQxcOHD4mNjeXff//l77//ZsGCBUyfPh0vLy9Kly4NgKenJxEREfj6+hIdHc3p06cZOnQo165dw9LSUmnL3d2dAwcOcObMGa11P506deLJkycMGzaMyMhIIiMjGTx4MOfPn8fKyipdTB07diQxMVF57efOnWPgwIGYmppqbYpx4sQJZs6cybVr11i/fj0rVqygZ8+e79SnEEIIIcTrZGqcyJJ8+fKxfPlygoKCWLBgAbdv3yZv3rxUrlyZZcuW6bSGJU+ePIwbN46uXbsyY8YMrQXvadzc3AgLC3vv3eLS+Pj4YGpqSkBAAP/++y8lSpTA29tb+WKdL18+Fi1axMSJE+nQoQN58+bFycmJn3/+OVv6f92b+sudOzcBAQFMmjRJKZjStteeN28eSUlJOvfTtm1b5XdDQ0MqV67M5MmTtaY22trasnDhQgICAmjdujWGhobUqVOHn3/+WWuqX40aNShSpAiFChXSWntjYWHB8uXLmTZtGh07dkRfXx97e3uWLl2qdX+nNKVKlWL58uX4+fkpu8fVq1cPPz8/ChQooFzn4uJCdHQ03333HUWLFsXHx4eOHTu+U59CCCGEEK9TabJjro0QQmQjDw8PzM3NmTRpUk6HwpMjq0mNz/yeSEIIIURO0C9QBOO6HYiLSyQlRf32J2RRrlx6mJoafbD2PxQzMyP09XWb9CZT44QQQgghhBBfHCmEhBBCCCGEEF8cWSMkhPjoLFu2LKdDEEIIIcRnTkaEhBBCCCGEEF8cGRESQog30DMyzekQhBBCiHTk36f3J4WQEEJkQqPRYFTt25wOQwghhMiQRq1GrZYNoN+VFEJCCJEJlUpFfHwSqamfzrahOUFfX48CBfJJrnQgudKd5Ep3kivdfW65Uqs1Ugi9BymEhBDiDVJT1Z/U/RNykuRKd5Ir3UmudCe50p3kSoBsliCEEEIIIYT4AkkhJIQQQgghhPjiyNQ4IYR4A319+XvR26TlSHL1dpIr3UmudCe50t2XmitZS5QxlUajkawIIUQGNBoNKpUqp8MQQggh3otarSYu7mmWiqFcufQwNTUiLi7xk1pPZWZmpHOhKyNCQgiRCZVKxb67f/EoOT6nQxFCCCHeSUGDArgUr4OenkpGhV4jhZAQQrzBo+R47j+Py+kwhBBCCJHNvqwJkkIIIYQQQgiBFEJCCCGEEEKIL5AUQkIIIYQQQogvjhRCQgghhBBCiC+OFEJCCCGEEEKIL47sGic+ec7Ozty6dUt5nDt3bgoXLkzDhg0ZOHAgZmZmOrel0WjYtGkTDRo0oFChQjr337p1awYMGJDl2D+U8PBwunbtqjxWqVTky5ePsmXL0r59e9q1a/ef3h/Hw8MDc3NzJk2a9J/1KYQQQgjxJlIIic+Cp6cnnp6eADx79oyoqCj8/Pzo0qULa9aswdjYWKd2jh8/zogRI9i3b9+HDPc/s27dOkqUKIFarSY+Pp79+/czbtw4bt++zeDBg3M6PCGEEEKIHCOFkPgsGBoaUqRIEeWxhYUFlSpVolmzZixcuFDnL/0azed1ozEzMzMlL8WKFaNChQoYGBjg5+dHy5YtKVeuXA5HKIQQQgiRM2SNkPhslSxZksaNG7Nt2zblWFRUFH369KFmzZpUqVIFFxcXgoKCAO3pZC4uLgQHBwMvR1VatGiBjY0Ntra2dOrUifPnz2v1FRsbS8+ePalatSrOzs6sWLFC6/zb2jh37hydOnXCzs6OmjVrMmDAAG7fvq2cv3fvHoMHD6ZGjRo4ODjg5eXFtWvX3ikv7dq1I3fu3OzYsUM5durUKTp37oyNjQ1OTk74+vqSkJAAQGBgII6OjqjVauX6pKQk7OzsWLduHQDR0dH06tULOzs7HB0dGTp0KLGxsZnGEB0djZeXFw4ODlSvXh1vb2+t6Y0eHh5MmDCBIUOGUK1aNRo0aMD8+fO1CtW39enh4cGoUaNo27YtNWrUICQk5J3yJYQQQojPkxRC4rNmZWXFjRs3SExMJCkpCU9PTwoWLMjq1avZunUrTZo0YfLkyVy6dAk7OzsCAwOBl4VL06ZN2bNnD2PHjqVnz57s2LGDxYsX8/z5c3755RetftauXat82e7evTsTJkxgz549AG9tIzU1VSnOQkJCWLx4Mbdv3+b//u//AHj69CkeHh4ALF++nGXLlmFqakq7du24d+9elnNiZGREqVKluHz5MgCRkZF0796d+vXrExISwtSpU7l48SKenp5oNBpatWrF/fv3CQ8PV9rYu3cvGo0GNzc37t27R6dOnShTpgzr169n7ty5JCQk0L59e54+fZqu/1u3btG+fXsMDAxYsmQJQUFBxMbG0qVLF6X4Ali1ahXGxsYEBwczePBgZs+ezYIFCwB07nPdunV07dqVlStXUr9+/SznSgghhBCfLymExGetQIECACQkJJCUlETXrl359ddfKV++PJaWlnh7ewNw+fJlDAwMMDExAV5OKcubNy8FCxZkwoQJtGzZEnNzc2xtbfn++++JiorS6sfV1RUvLy/Kli2Lh4cHbm5uykjT29pISEggLi6OokWLYm5uztdff42/vz+DBg0CYNu2bcTHx+Pn50fFihWxsrJiwoQJ5M+fn7Vr175TXoyNjXny5AkAixYtol69enh5eWFpaUmNGjWYNm0aZ8+e5dixY1hYWChFWpotW7bg6upK/vz5WbVqFcWLF+eXX36hfPnyVKlSBX9/fx48eMDOnTvT9b1y5UoMDQ2ZOnUqFStWpFq1asycOZMHDx6wefNm5bqyZcsyZswYypcvT+vWrfHw8GDp0qVoNBqd+6xUqRItWrTAysoKU1PTd8qVEEIIIT5PskZIfNbSvuznz58fIyMjOnXqxNatW4mIiOD69etERkYCaE37elXNmjWJjo5m9uzZXLlyhZiYGC5fvpzu+urVq2s9rlatGqGhoTq1YWJiQs+ePRk3bhwzZ86kdu3aNGzYEDc3NwAiIiJ4/PgxNWvW1Orj+fPnREdHv1NeEhISKFq0qNJ+TEwMdnZ26a6Ljo7GwcGBNm3aMG7cOMaMGUNiYiJhYWHK6ExERAR///13uudnFl9UVBRVqlTBwMBAOVakSBHKli2rVWA6ODho7WxnZ2fHggULiIuL07nPMmXKZCUtQgghhPiCSCEkPmsXL17E0tISIyMjYmNjad++PWZmZjg7O+Po6EjVqlVp2LBhps/fsmULI0aMoEWLFtjb29OhQweioqIYO3as1nV6etqDq2q1Wvmir0sbw4YNo1OnToSGhvLXX38xbtw4Fi5cyKZNm1Cr1ZQtW5bff/89XXyGhoZZzkliYiJXr16lefPmSqwtWrTAy8sr3bVpW49/8803+Pr6cuDAAe7fv0+RIkWoXbu28vzatWszevTodM/PaLe+zDakUKvV5M6dW3mcK1eudOcB9PX1de4zb968GfYlhBBCCCFT48Rn6+7du+zbt48WLVoAsHXrVh49esSqVavo168fjRs35vHjx8D/vpy/fm+d+fPn8/333zNp0iQ6d+5MzZo1uXHjhtZz4GXB9aqTJ09SoUIFndq4cuUKo0ePplChQnTs2JGZM2eycOFCoqOjiYyMxMrKitu3b2NsbEyZMmUoU6YMJUuWZNq0aRw/fjzLeVm7di0ajYamTZsCUKFCBf755x+l7TJlypCSksLEiRO5c+cO8LLgcnNzY/fu3Wzbto2WLVsqxV+FChWIjo6mRIkSyvNNTEz47bff0k0hBLC2tub8+fMkJycrx+7fv09MTAzly5dXjr2+IcWpU6coVaoUJiYmWe5TCCGEEOJ1UgiJz8LTp0+JjY0lNjaWGzdusHfvXnr27EmpUqXo3r07AMWLFycpKYmdO3dy+/ZtDh8+zJAhQwCUL+VpIyyRkZEkJiZSokQJTp06xcWLF7l+/TqLFy9m+fLlWs+Bl+t4goKCuHLlCvPnz2fPnj3069cP4K1tmJqasm3bNn799Veio6O5evUqGzduxMTEhHLlyvHdd99hYmKCt7c3Z8+eJTo6mhEjRnDo0CGsra3fmJeHDx8SGxvLv//+y99//82CBQuYPn06Xl5elC5dGnh5D6aIiAh8fX2Jjo7m9OnTDB06lGvXrmFpaam05e7uzoEDBzhz5gzu7u7K8U6dOvHkyROGDRtGZGQkkZGRDB48mPPnz2NlZZUupo4dO5KYmMjw4cOJjIzk3LlzDBw4EFNTU5o1a6Zcd+LECWbOnMm1a9dYv349K1asoGfPnu/UpxBCCCHE61Saz+3GKeKL4+zsrLX1cu7cuSlRogRNmzbF09NT2QBBo9Ewbdo0Nm7cSEJCAubm5rRt25Z9+/ZRunRpfvvtN5KTk+nfvz9HjhxhyJAhNG7cmF9//ZUzZ85gYGBAxYoVad++PYMHD2bFihXUqFEDZ2dnmjdvzunTpzl9+jTm5uZ4e3srX+pv3Ljx1jZOnz7NtGnTuHTpEqmpqdja2jJ8+HC+/vprpY0pU6bw119/kZqaytdff82QIUOwt7fPMCevbgWextDQkMqVK9O5c2dlNCjNX3/9RUBAABERERgaGlKnTh1+/vlnihcvrnXdN998Q6FChVi1apXW8YiICKZNm8apU6fQ19fH3t6en376ia+++gp4uZW1ubk5kyZNUq738/Pj1KlTGBgYUK9ePX766SdKliypXG9sbEzu3Lk5cOAARYsWpUePHnTs2PGd+3xXG67v4v7zuPdqQwghhMgphfOY0qb0t8TFJZKSkvGa6IzkyqWHqalRlp+X08zMjNDX122sRwohIcRHJ7uKmOwghZAQQohPmRRCmZOpcUIIIYQQQogvjhRCQgghhBBCiC+ObJ8thPjoLFu2LKdDEEIIIcRnTkaEhBBCCCGEEF8cGRESQog3KGhQIKdDEEIIId6Z/DuWOSmEhBAiExqNBpfidXI6DCGEEOK9qNVq1GrZKPp1UggJIUQmVCoV8fFJpKZ+OtuG5gR9fT0KFMgnudKB5Ep3kivdSa5096XmSq3WSCGUASmEhBDiDVJT1Z/U/RNykuRKd5Ir3UmudCe50p3kSoBsliCEEEIIIYT4AkkhJIQQQgghhPjiyNQ4IYR4A319+XvR26TlSHL1dpIr3UmudCe50l1O5UrW6HycVBqNRt4VIYTIgEajQaVS5XQYQgghPnEatZqHcU8/qWIoVy49TE2NiItL/KTWU5mZGelc6MqIkBBCZEKlUvEs/CjqJ/E5HYoQQohPlJ5xAfI61EZPT/VJFUJfAimEhBDiDdRP4lE/isvpMIQQQgiRzWQyqRBCCCGEEOKLI4WQEEIIIYQQ4osjhZAQQgghhBDiiyOFkBBCCCGEEOKLI4XQJ87Z2Rlra2v++OOPDM//+uuvWFtbExgYmKU233R9cHAw1tbWymNra2uCg4N1DzoTQ4cOxdramr179753WxkJDAzE2dlZeZxdccPLbZY3btzIgwcPgPQ5yglpn420nypVquDk5MTo0aN5+PDhfxrLx5APIYQQQohXSSH0GcidOze7du1KdzwlJYXdu3dn+31QmjZtyuHDh7O1zSdPnrB3717Kli3L6tWrs7XtzBw+fJimTZtmS1vHjx9nxIgRJCUlAR8mR+/C09OTw4cPc/jwYXbs2MGoUaMIDw+nS5cuPHnyJKfDE0IIIYTIMVIIfQbq1KnDmTNnuHv3rtbxo0ePYmhoSIkSJbK1v7x581KkSJFsbXPr1q3o6+vTr18/wsLCuHnzZra2n5EiRYqQN2/ebGnr9fsSf4gcvQtDQ0OKFClCkSJFsLCwwMXFhaCgIO7cucPChQtzOjwhhBBCiBwjhdBnwMbGhpIlS7Jz506t49u3b8fNzS3diNDp06fp2rUr1atXx8HBAR8fH+LitO+TEhsbS8+ePalatSrOzs6sWLFCOfe2aU4HDhzA3d0dGxsbGjdujL+/P8nJyW98DcHBwdSqVQsXFxdy587N2rVrtc4HBgbSsWNHZs+ejYODAzVq1MDHx4eEhATlGmtra1asWEG7du2oWrUqLVq0YN++fZn2+frUuJCQEL777jtsbGxwcXFhyZIlyrmoqCj69OlDzZo1qVKlilJQAISHh9O1a1cAXFxcCA4OTpejR48e4evrS8OGDbGxsaFDhw6Eh4drvb5u3boxf/58GjRoQNWqVenSpQvR0dHKNaGhobi7u1OtWjXq1KnDiBEjePz48RvzmpGSJUvSuHFjtm3bphx78uQJo0aNonbt2lSvXp2uXbty/vx5AG7cuEHFihUJDQ3VasfHx4eOHTsCkJycjJ+fH/Xr18fOzo527dq9cUTs2bNn+Pv74+LiQtWqVWnZsqXWqGZwcDANGjRg7dq1ODo6Ymdnx48//si9e/eUa97WZ3BwMI0bN2b8+PFUr16dfv36ZTlXQgghhPh8SSH0mXBzc9MqhJKTk9m7dy/NmjXTuu7cuXN4eHhQoUIF1q5dS0BAAGfPnqVHjx6kpqYq161du5YaNWoQEhJC9+7dmTBhAnv27HlrHIcOHWLQoEG0a9eOrVu3Mnr0aHbs2MHw4cMzfc7ff//NuXPnaNKkCUZGRjg5ObFhwwZevHihdd358+c5fPgwQUFBzJ49m+PHjzNo0CCta6ZOnUrLli3ZvHkzDRs2pH///pw6deqtcW/fvp2ff/6Zli1bEhISwpAhQ5g6dSrBwcEkJSXh6elJwYIFWb16NVu3bqVJkyZMnjyZS5cuYWdnp6ypWrduXbrpdqmpqXh6enLixAn8/PwIDg7GysqKHj16cO7cOeW6EydOcPLkSebPn8/KlSt58OABvr6+ADx8+JD+/fvTpk0btm/fzqxZszh+/DhTpkx562vLiJWVFTdu3CAxMRGNRkOvXr24ceMG8+bNY+3atdja2tKxY0ciIiKwsLCgZs2abN26VXn+8+fP2b17N+7u7sDLoigsLIypU6eyceNG3Nzc8PLy4uDBgxn2P2TIEDZt2sSoUaMICQnB1dWVgQMHaq0Pe/jwIUuWLMHf358lS5Zw584devbsSUpKis59Xr9+nX///ZdNmzYxePDgd8qVEEIIIT5PuXI6AJE93NzcWLRoEffu3aNYsWKEhYVhZmZG5cqVta4LCgrC2tqaUaNGAVC+fHmmT59Oy5YtOXz4MA0bNgTA1dUVLy8vAMqWLcuZM2cICgqicePGb4xj7ty5tGvXjg4dOgBQunRpfH19+eGHH7h58yalSpVK95zg4GDy5MmDq6srAM2aNWPXrl3s3bsXNzc35TqVSoW/vz/FihUDXm4E0atXL65cuUK5cuUAcHd3p3PnzgAMGzaMY8eOsXz5cuzt7d8Y95IlS2jatCk9evQAwNLSksTERPLmzUtSUhJdu3alc+fOGBkZAeDt7c3ChQu5fPkylSpVwsTEBAAzM7N00+0OHz7MxYsX2bJlC1ZWVgD4+vpy/vx5Fi1aREBAAPByTdeUKVOUtjp06ICfnx8A9+7dIzk5mZIlS2Jubo65uTlz587VKl6zokCBAgAkJCRw7tw5zpw5w9GjRylYsCDwslA5deoUS5cuZdKkSbi7uzN27FiSkpLIly8f+/fvJzU1FTc3N2JiYti6dSubNm2iUqVKAHTv3p3IyEgWLVqEk5OTVt/R0dHs27ePuXPnKucGDBhAZGQkc+fOVT4HL168YPLkyVSpUgUAPz8/mjZtyl9//UXp0qV17rNfv35YWFi8U56EEEII8fmSQugzUaVKFSwsLNi1axddu3Zl+/bt6UaD4OUUr3r16mkdq1ixIsbGxly+fFkphKpXr651TbVq1dJNjcpIREQE586dY/369cqxtPUz0dHR6QqhlJQUQkJCaNiwIfnz5wfAyckJIyMjVq9erVUIWVpaKkUQoBQ3UVFRSiHk4OCg1b6dnR1hYWFvjTsqKipdvtq1a6f83qlTJ7Zu3UpERATXr18nMjISALVarVPbxsbGShEEL4u6GjVqaE3lKly4sFIEARgbGyujYpUqVaJ58+Z4eXlRpEgR6tWrh5OT01sL08ykbZSQP39+Ll68iEajoVGjRlrXJCcn8/z5cwC+/fZbxo4dy759+2jevLkyipM/f37+/PNP4GWOXvXixQul4HrV5cuXgfSfsZo1azJ9+nTlsZGRkVIEwcui3cTEhKioKGVKpC59WlpavjkZQgghhPgiSSH0GUmbHte+fXv27dvHunXr0l3z+qL+V4/nzp1beaynpz1rUq1WY2Bg8NYY1Go1PXv2pHXr1unOZbR5wMGDB7l//z579uzRGr1KTU0lPDycq1evUrZsWQCt+NKuAdDX11eO5cqVK901r7+WjLz+vFfFxsbSvn17zMzMcHZ2xtHRkapVqypF49u8Keev9vu2/E6bNo0ff/yRQ4cOceTIEYYPH0716tW11jLp6uLFi1haWmJkZIRarSZ//vwZbiWeFpOhoSFNmjRhy5YtODo68ueffzJ//nyt17dixQplxCyNLrlP83o+Xn+/4eX7qa+vn6U+s2tDDCGEEEJ8XmSN0GfEzc2NU6dOsWHDBiwsLChfvny6a6ytrTl58qTWscjISBISErSuv3jxotY1J0+epEKFCm+NoUKFCly9epUyZcooP3fv3mXKlCkkJiamu37Dhg2YmpqyadMmrZ85c+ag0Wi0Nk24evWq1pbPp0+fBtAqoNIW+L96zddff/3WuMuXL5/uuRMnTsTb25utW7fy6NEjVq1aRb9+/WjcuLGySUHaF/I3bVFubW3NkydPiIqKUo5pNBpOnjzJV1999dbYAM6ePctvv/1GuXLllE0VfvvtN44eParcu0hXd+/eZd++fbRo0QJ4uV4oISGBFy9eaL1vCxYs0Npsok2bNoSFhbFp0yYKFy5M7dq1AZTPRWxsrNbz0zaNyCgfQLrP4YkTJ7Ty8ejRI27cuKE8/vvvv0lISKBy5cpZ7lMIIYQQ4nVSCH1GKlWqRJkyZZg2bVqG0+Lg5TqKy5cvM27cOKKjowkPD2fYsGFUrlyZOnXqKNdt27aNoKAgrly5wvz589mzZ49Ou2716tWLXbt2MWvWLK5evcpff/2Fj48PT548STcidP/+fQ4dOkS7du2oWLEiVlZWyo+Liwu1atUiODhY2XHu6dOn/PTTT0RFRXHkyBHGjh1L06ZNMTc3V9pcsmQJW7Zs4erVq0yePJnLly/zww8/vDXu3r17s337dpYtW8b169fZsmULq1atwtnZmeLFi5OUlMTOnTu5ffs2hw8fZsiQIQBKbIaGhsDLovL1gs/R0ZFKlSoxdOhQjh07RnR0NGPHjiUqKkqn2ODlFLaVK1fi5+dHTEwMUVFRbN++HUtLS0xNTTN93tOnT4mNjSU2NpYbN26wd+9eevbsSalSpejevTsA9evXp1KlSgwePJijR48SExPDxIkTCQ4O1iqOa9SoQYkSJZg5cyYtW7ZURl4qVKhAo0aNGD16NPv37+fGjRssWLCAefPmUbp06XQxlS9fnkaNGuHr68vBgwe5evUqs2bNYt++fXh6empdO3z4cC5cuMCZM2f46aefsLOzo2bNmlnuUwghhBDide80Ne7hw4csWrSII0eOEBsby8KFC9m7dy8VK1ZUFjqLnOHm5sbvv/+e6Y1Cq1WrxsKFC/H396dVq1bkz58fV1dXhg4dqjUVqUePHhw4cIDp06djbm7OtGnT0q2/yUiTJk2YMWMG8+bNY+7cuRQsWBBnZ2eGDRuW7tqQkBA0Go2yBfPrunfvTt++fdmxYwcAJUqUoFKlSnTu3Bl9fX1atGiRrt0OHTqwePFioqKiqFixIosWLaJixYpvjdvZ2ZmxY8eyYMECJk+ejLm5OT4+PrRq1QqNRsPFixeZNGkSCQkJmJub07ZtW/bt28f58+fp2LEjVlZWNGzYkEGDBjFkyBBl0wF4OXUvKCiIyZMn079/f5KTk6lSpQqLFy/G1tb2rbHBy+IhMDCQWbNmsXLlSvT09KhduzYLFix44/SzoKAgZZvv3LlzU6JECZo2bYqnp6cypSwtPj8/PwYNGkRSUhLly5dn1qxZWsUxQOvWrQkICFB2i0szY8YMZsyYwa+//srjx48pXbo0EyZMyHCKJMD06dOZPn06I0eOJD4+HisrKwIDA9OteWrRogW9e/cmOTkZZ2dnRo4cqYy+ZbVPIYQQQohXqTSZLWDIxI0bN+jYsSPPnz+nevXqhIaGsn79eoKCgtixYwdz5sxJt0uUEO8rMDCQjRs3sn///kyvsba2ZuLEiem+pItPT3BwMD4+PsrGCjnp6d7dqB/Fvf1CIYQQIgN6BU0xdP2GuLhEUlLevsnSxyJXLj1MTY0+ubjNzIzQ19dt0luWR4QmT55MoUKFWLZsGYaGhsquTtOmTeP58+daW+IKIYQQQgghxMcoy2uE/vrrL/r160eBAgXSLRBv3749f//9d7YFJ4QQQgghhBAfwjttlpDZVsPJyclv3D1LiHc1YMCAN06Lg5f3p5FpcZ8Hd3f3j2JanBBCCCE+X1kuhGrUqMG8efN4+vSpckylUqFWq1m1apVyk0shhBBCCCGE+FhleY3Q0KFD6dixI9988w0ODg6oVCoWLVpEdHQ0MTExrFy58kPEKYQQQgghhBDZJsuFkJWVFevXr2fWrFmEh4ejr6/PkSNHqFmzJpMnT1ZuliiEEJ8DPeMCOR2CEEKIT5j8O/LxyvL22UII8aXQaDSy7lEIIcR706jVPIx7ilr96Xztlu2z/7/jx49nKYCaNWtm6XohhPgYqVQq4uOTSE39dP4ByAn6+noUKJBPcqUDyZXuJFe6k1zpLqdypVZrPqki6EuhUyHk4eGR7q+irw8kqVQq5a+nly5dyr4IhRAiB6Wmqj+pv4TlJMmV7iRXupNc6U5ypTvJlQAdC6GlS5d+6DiEEEIIIYQQ4j+jUyFUq1atDI8nJSWRkJBAwYIFyZ07d7YGJoQQQgghhBAfSpZ3jQM4ceIEU6ZM4cKFC8oUORsbGwYPHkzt2rWzNUAhhMhJui64/JKl5Uhy9XaSK91JrnQnudKd5Ep3HzpXH8O6qSzvGnfq1Cm6du2KhYUFzZo1o3Dhwvz7779s27aNW7dusWzZMuzs7D5UvEII8Z+RXeOEEEKID0Ot1hAXl5jtxVBWdo3LciHUtWtX9PT0WLRoEfr6+spxtVpNjx49UKlUBAUFZS1iIYT4SN24nMzzp7LTjxBCCJFd8hiqsLA2+CBbc2f79tmvOn/+PNOmTdMqggD09PTo0qULP//8c1abFEKIj9bzpxqeJUohJIQQQnxusjzpz8jIiJSUlAzPpaSkpNtWWwghhBBCCCE+NlkuhOzt7Zk/fz5JSUlax58+fcr8+fOpUaNGtgUnhBBCCCGEEB9CltcIxcTE4O7uTp48eXBycqJIkSLExsZy8OBBnj17xsqVK6lYseKHilcIIf5T/5x+LlPjhBBCiGyU10jFV3Z5Pr01QmXKlGHt2rUEBgYSGhrK48ePMTExoVatWvTv35+vvvoqywELIYQQQgghxH/pnTYGL1++PP7+/oSFhXHhwgXCwsLw9/fnq6++4v79+9kdo8hBzs7OODs7k5CQkO7ciBEj8PDw0LktjUbDxo0befDgQXaG+EYeHh6MGDEiS8/5888/8fDwwN7enmrVqtGiRQvmz5/PixcvPlCUurO2tiY4OBiAFy9esHjx4nduKzg4GGtr60x/Fi1alE1RQ2BgIM7OztnWnhBCCCHE+9J5RCg5OZmjR4+iUqmoUaMG+fLl0zqfmprK4sWL+f333zlx4kS2Bypyzq1bt5gyZQpjx459r3aOHz/OiBEj2LdvXzZFlv3CwsLo27cvgwcPZsyYMeTKlYtTp04xceJErl69ysSJE3M0vsOHD2NsbAzA1q1bmThxIt26dXvvNjOSP3/+92r3VZ6ennTu3Dnb2hNCCCGEeF86FULXrl3D09OTO3fuAFCqVCkWL16Mubk5AEeOHGH8+PFcuXKFkiVLfrhoRY6wsLBgzZo1NGnShLp1675zO5/CjoJr1qyhfv369OjRQzlWpkwZnj17xtixY/Hx8aFAgQI5Fl+RIkWU37Mrn6+2+aEYGRlhZGT0wfsRQgghhNCVTlPjpk2bxpMnTxg9ejRTp05FrVYzefJk1Go1vr6+9OjRg1u3btGvXz+2b9/+oWMW/7HvvvuOOnXqMHLkyAynyKV58uQJo0aNonbt2lSvXp2uXbty/vx5AMLDw+natSsALi4uLFu2DGtray5evKg8/8cff6R69eqkpqYCL2/SW7t2bTZv3gzA6dOn6dq1K9WrV8fBwQEfHx/i4uKU5zs7OzN58mSaNm2Kg4MDx44d04ovJSUFb29vnJycuH79eoavQaVSERkZyb1797SOt2rViq1bt2JoaAi8LEIWLFiAi4sL1apVo2XLloSEhGg9JyYmhr59+yrxDhkyRJkWmNG0wleP3bx5E2tra+bNm0e9evVwcXEhISFBmRoXHByMj48P8HK63I4dO6hSpQqbNm3SanPatGm0adMmw9eqq8DAQLp168b8+fNp0KABVatWpUuXLkRHRyvXPHz4kMGDB1OjRg0cHByYOnUqXbt2JTAwUGkjbWpc2mvbtWsXbdu2pUqVKjg7O7NmzRqtfjds2ICbmxs2Nja4ubmxZMkS1Or/Lai8d++eVp9eXl5cu3ZNK5/e3t54enpib2/PggUL3isPQgghhPi86FQInT59mr59+9KhQweaNWvG2LFjOXz4MGPGjGHVqlU0bNiQ7du34+3tTd68eT90zOI/plKpmDBhAo8fP2by5MkZXqPRaOjVqxc3btxg3rx5rF27FltbWzp27EhERAR2dnbKl+J169bRtm1bzM3NCQsLA15OrQwPDycxMVEpjs6dO8eTJ09wcnLi3LlzeHh4UKFCBdauXUtAQABnz56lR48eSuEEsHz5cn755RcWLlyIra2tcjw1NZWffvqJCxcusGzZMkqXLp3h6/jhhx948OABzs7O/PDDD8yaNYtjx46RO3duypcvT65cLwdRZ8yYwapVqxg1ahRbtmyha9eujBkzhhUrVgAQHx9P586dSU5OZsmSJfzxxx9cv36dQYMGZSn3GzduZMmSJfj7+2tNVWvatCn/93//B7yc2ubi4oKTk5NWIaRWqwkJCcHd3T1LfWbkxIkTnDx5kvnz57Ny5UoePHiAr6+v0k+fPn2IiYlh4cKFBAUFcebMmXSF6OsmTpyIl5cXO3bswMnJiTFjxnDjxg3g5cjclClT6N+/P9u2bWPQoEEsWLCAqVOnAi+3608rGpcvX86yZcswNTWlXbt2WkXsrl27qFu3Lhs2bKB58+bvnQchhBBCfD50mhr36NEjvv76a+VxtWrVePr0KZs3b2bixIm0bt36gwUoPg7m5ub8/PPP/Prrr3z77bc4OjpqnT969Chnzpzh6NGjFCxYEIAhQ4Zw6tQpli5dyqRJkzAxMQHAzMyMvHnz4uzsTFhYGL179+bcuXPkzp0bW1tbwsPDsbGx4eDBg1SvXh0TExOCgoKwtrZm1KhRwMsNO6ZPn07Lli05fPgwDRs2BKBhw4bppu+p1Wp8fHw4e/Ysy5YtU6Z0ZsTe3p7g4GD++OMPQkNDOXr0KABFixZl9OjRuLq68vTpUxYvXsz06dNxcnICoHTp0ty6dYtFixbRuXNntm/fTmJiItOnT1de9/jx49m2bRvJyck6571Tp04Z7sSYN29eZa1Q2tS2Nm3a0K9fP+7du0exYsX466+/ePjw4VsLADs7uwyPh4WFKSNgKSkpTJkyRXktHTp0wM/PD4Bjx45x7tw5duzYQbly5QDw9/d/6+YI3bp1w8XFBYDBgwezYsUKzp49i4WFBXPmzKFv3740a9YMeDk9MyEhAV9fXwYOHMi2bduIj4/Hz89PKU4nTJhAeHg4a9euZcCAAQCYmJjQs2fPN8YhhBBCiC+TToVQSkqK1uYIab8PGjRIiqAvSPv27dm1axe//PILW7du1Tp38eJFNBoNjRo10jqenJzM8+fPM2yvUaNGrFmzhmfPnhEWFkbt2rUxNzfn6NGj9OrVi9DQUFq1agVAVFQU9erV03p+xYoVMTY25vLly0ohVKZMmXT97NixgxcvXlC+fHmd1sN89dVXTJgwAYDo6Gj+/PNPli9fzsCBAwkODub58+c8f/6coUOHoqf3v0HVlJQUkpOTefbsGVFRUVhaWiqFQ1q8Wb3HVkavJzMNGjSgUKFCbN68md69e7Nx40ZcXFy0YsjI69Pp0rz633zhwoW12jE2NlZ20YuIiMDExEQpgtKuL1u27Bv7LV++vFZ78HInvIcPH3L37l2mT59OQECAco1areb58+fcvHmTiIgIHj9+TM2aNbXafP78udaUvazkTwghhBBflizfR+hVNWrUyK44xCdi/PjxtGjRIt3uaWq1mvz58ytbO7/KwMAgw7Zq1aqFgYEBx44d46+//qJly5aYm5uzYsUKbt26xaVLl5TpdJltDKDRaMidO7fyOKOpmUWLFmX69Ol4enoya9YshgwZkmFbT58+Zfr06bRp04ZKlSoBL7+sly9fnu+++45GjRpx+PBh5XPv7++v9eX/1debNkqRFSkpKemOZWWqqb6+Pq1atWLLli106dKFvXv3ahUSmdGlWMjsPUzr99W1O7rKqE2NRqO05ePjk+HmHCVKlECtVlO2bFl+//33dOfTRrEga/kTQgghxJflne4jpDxZ772eLj5BJUuWZMSIEaxfv15rm3QrKysSEhJ48eIFZcqUUX4WLFigbJetUqm02sqdOzeOjo7s27ePs2fPUqdOHapXr05KSgqBgYFYWVlRqlQp4OWGACdPntR6fmRkJAkJCVojCxmpWbMm1apVY9iwYSxatIgLFy5keF3evHnZsmULq1evTnfOyMgIfX19ChUqRLly5ciVKxe3b9/Weq2hoaEsWrQIPT09vvrqK65du8aTJ0+UNi5evEidOnW4e/cuuXPnTrfxRExMzBtfx+tezye8nB4XFRXFsmXLMDY2TjeF8UOoWLEiT5480RqJiYuLy/LrSVOoUCHMzMy4ceOGVn4vXryIv78/8PLzdvv2bYyNjZXzJUuWZNq0aRw/fjw7XpYQQgghPnM6VzKhoaFs2rSJTZs2sXnzZlQqFQcPHlSOvfojPm9t27bF0dFRWdgOUL9+fSpVqsTgwYM5evQoMTExTJw4keDgYKVQSftLfWRkJImJicDLnd6Cg4MpWrQoFhYW5M2bFzs7OzZv3qysHwHo3r07ly9fZty4cURHRxMeHs6wYcOoXLkyderU0SnuDh06YGNjg4+PT4brdPT09Bg2bBirV69m9OjRnDt3jps3b3LkyBF+/PFHSpQoQZMmTTA2NqZDhw4EBASwefNmbty4wfr16/Hz86No0aIAtGjRAhMTE4YPH05kZCQXLlxg9OjRWFlZUbx4cWxtbYmMjCQkJIQbN24we/ZsoqKisvQ+pOXzwoULPHv2DICyZctib2/PnDlzaNmyJfr6+m9tJzY2NsOf+Ph4neJwcHCgWrVq/PTTT5w5c4bIyEiGDRtGUlJShsXa26hUKnr16sWyZctYvnw5169fZ8+ePYwZM4a8efNiYGDAd999h4mJCd7e3pw9e5bo6GhGjBjBoUOHsLa2znKfQgghhPjy6Dx/Z/bs2emOpU1bepVKpVLWdYjPV9oUuTT6+voEBQXh5+fHoEGDSEpKonz58syaNUspVKysrGjYsCGDBg1iyJAheHp60rBhQ1JTU6ldu7bSVt26dQkPD9cqhKpVq8bChQvx9/enVatW5M+fH1dXV4YOHao1Ne5NVCoV48ePp2XLlsyZMyfDHdzatm1LkSJFWLJkCb169SIxMZHChQvj4uLClClTlKlWPj4+mJqaEhAQwL///kuJEiXw9vZWFubny5ePRYsWMXHiRDp06EDevHlxcnLi559/Bl5uSX7p0iXGjx9PSkoKbm5u/PDDD5w+fVrn96B27dpUq1ZN2bjAzc0NAHd3d06dOqXz+r3MRo2cnJyYN2+eTm0EBgYyduxYunXrRp48eejUqRNXrlzR+b15naenJ3ny5GHZsmVMmjSJwoUL065dO7y9vYGXa4qWL1/OlClTlJ0Dv/76a4KCgt46QiiEEEIIAaDS6HBXxlu3bmWp0TftyiWE+LACAwM5cuQIq1at+k/6e/jwIWfPnsXR0VEpfJKTk3FwcGD06NGf/B9G/jn9nGeJH//NgIUQQohPRV4jFV/Z5SEuLpGUlKyvM34TMzMj9PV1m/Sm04iQFDZCfPxOnjzJ1atXWbp0KWPHjv3P+s2VKxeDBw+mQ4cOdOzYkRcvXrBo0SIMDAxo0KDBfxaHEEIIIURWvNeucUKIj8eBAwdYvnw5bdq0UabJ/RcKFCjA3Llz8ff3Z82aNejp6WFvb8/SpUsxMzP7z+IQQgghhMgKnabGCSHEl0qmxgkhhBDZ62OZGif7XwshhBBCCCG+OFIICSGEEEIIIb4477xGKD4+njNnzhAfH0+hQoWwsbHByMgoO2MTQogcl8cw6/dCEkIIIUTmPpZ/W7NcCKnVaqZMmcLKlSt58eIFaUuM8uXLR9++fendu3e2BymEEDlBo9FgYW2Q02EIIYQQnx21WoNanbNrcLNcCM2ePZtly5bRpUsXGjduTKFChbh//z5bt27F398fIyMjOnfu/CFiFUKI/5RKpSI+PonU1OxdyPm50dfXo0CBfJIrHUiudCe50p3kSneSK9196Fx9koXQhg0b6Nu3L/3791eOlS1blpo1a5I/f37++OMPKYSEEJ+N1FR1tu9o87mSXOlOcqU7yZXuJFe6k1zp7nPOVZY3S4iLi8POzi7Dc/Xr1yc2Nva9gxJCCCGEEEKIDynLhVCdOnXYsWNHhueOHDmCvb39ewclhBBCCCGEEB+STlPjNm3apPxua2vLrFmzePDgAW5ubhQpUoRHjx4RGhrKrl27GDly5IeKVQgh/nO63pTtS5aWI8nV20mudCe50p3kSneSq//5GNbo5DSVJm3btzeoWLGi7g2qVFy6dOm9ghJCiI+BRqNBpfo4tvgUQgghspNarSYu7mmmxVCuXHqYmhoRF5f4Sa0RMjMz0rnQ1WlEaN++fe8VkBBCfIpUKhW3LhwmOTE+p0MRQgghso2BUQHMqziip6f6okeFdCqEzM3NMzyelJREQkICBQsWJHfu3NkamBBCfAySE+N59uRhTochhBBCiGyW5e2zAU6cOMGUKVO4cOGCckNVGxsbBg8eTO3atbM1QCGEEEIIIYTIblkuhE6dOkW3bt2wsLCgX79+FC5cmH///Zdt27bRs2dPli1blun22kIIIYQQQgjxMdBps4RXde3aFT09PRYtWoS+vr5yXK1W06NHD1QqFUFBQdkeqBBC5ISr4dtlapwQQojPSl5jM8o6NH3jRghfwmYJWd478Pz583Tt2lWrCALQ09OjS5cunDt3LqtNCiGEEEIIIcR/KsuFkJGRESkpKRmeS0lJIYsDTEJ8MCEhIbRr1w5bW1vs7Oxo06YNq1evznI7v//+O7Vq1cLOzo7z58/z999/c/DgwewPOBsFBgZibW2t/FSqVIlatWrRvXt3wsPD//N4rK2tCQ4O/s/7FUIIIYTITJYLIXt7e+bPn09SUpLW8adPnzJ//nxq1KiRbcEJ8a7Wr1/P6NGjadeuHRs3bmTDhg20atWK8ePHM2vWLJ3befLkCQEBAXTq1ImtW7dSsWJF+vTpw/nz5z9g9NmjePHiHD58mMOHD3PgwAEWLVpEsWLF6N69O6GhoTkdnhBCCCFEjsryZglDhw7F3d0dFxcXnJycKFKkCLGxsRw8eJBnz54xYcKEDxGnEFmycuVK2rRpw/fff68cK1euHPfu3WPp0qX0799fp3bi4+PRaDTUrl07023kP1b6+voUKVJEeVy8eHEmTZrEo0eP8PX1Zffu3eTK9U4bRwohhBBCfPKyPCJUpkwZ1qxZQ61atQgNDWXRokWEhoZSq1Yt1q5dS8WKFT9EnEJkiZ6eHqdPn+bx48dax3v37s2aNWuUx8+ePcPf3x8XFxeqVq1Ky5Yt2bVrFwDh4eE4OzsD8MMPP+Dh4YGzszO3bt1i1qxZeHh44O7uzvjx45X29u7di7W1NTt37lSOTZo0iW7dugEQFRVFnz59qFmzJlWqVMHFxUVrc5HAwEC6dOnC4MGDsbe3Z9y4ccDL3Ro7d+6MjY0NTk5O+Pr6kpCQ8E65+eGHH7h16xZnzpxRjm3YsAE3NzdsbGxwc3NjyZIlqNUvF0Z6eHgwaNAgrTaOHz+OtbU1MTExABw4cAB3d3dsbGxo3Lgx/v7+JCcnZxrDwYMHadeuHXZ2djg6OjJx4kSePXumnLe2tmbFihW0a9eOqlWr0qJFi3Q3dn5bn9bW1sycOZNGjRrh6OjItWvX3ilfQgghhPg8ZbkQAvjqq6/w9/cnLCyMCxcuEBYWhr+/P1999VV2xyfEO+nZsycRERE0aNCA3r17M3/+fM6dO4exsTFly5ZVrhsyZAibNm1i1KhRhISE4OrqysCBA9m7dy92dnasW7cOeFmgBAYGsn79eooXL46npyeBgYE0atSIsLAwpb0jR46gUqm01uEcPHgQFxcXkpKS8PT0pGDBgqxevZqtW7fSpEkTJk+ezKVLl5Trjx8/TuHChdm8eTMeHh5ERkbSvXt36tevT0hICFOnTuXixYt4enq+05o8a2trACIjIwFYs2YNU6ZMoX///mzbto1BgwaxYMECpk6dCoC7uzsHDhzQKrxCQkKwt7enTJkyHDp0iEGDBtGuXTu2bt3K6NGj2bFjB8OHD8+w/z179tC3b1+cnJwIDg7G19eX7du3M2TIEK3rpk6dSsuWLdm8eTMNGzakf//+nDp1CkDnPleuXMnMmTOZNWsWlpaWWc6VEEIIIT5fOs2LOX78+BvP58mTh+LFi1O0aNFsCUqI99WkSROKFy/O0qVLCQsLU9bEWFpa8ttvv1G9enWio6PZt28fc+fOxcnJCYABAwYQGRnJ3LlzcXV1xczMDAATExMKFiwIvJxyZmhoSMGCBXF2dmbWrFncuXOHEiVKEBYWhouLi1IIXb9+natXr+Ls7ExSUhJdu3alc+fOGBkZAeDt7c3ChQu5fPkylSpVUuL39vbG2NgYgOHDh1OvXj28vLyU1zBt2jRcXV05duwYDg4OWcpNWrtPnjwBYM6cOfTt25dmzZoBYGFhQUJCAr6+vgwcOJBvv/2WsWPHsnfvXlq1akVycjK7du1Sio65c+fSrl07OnToAEDp0qXx9fXlhx9+4ObNm5QqVUqr//nz59O4cWP69esHQNmyZdFoNPz444/8888/yh9U3N3d6dy5MwDDhg3j2LFjLF++HHt7e537bNmyJVWrVs1SfoQQQgjxZdCpEPLw8EClUmkde/Uv0WnnqlevTkBAAIUKFcrGEIV4N7a2ttja2qJWq4mMjCQ0NJTly5fTq1cv9uzZw+XLl4GXn9tX1axZk+nTp+vUx9dff02xYsUICwujbt263Lx5Ez8/P9q2bausnatUqZKyviht04WIiAiuX7+ujMqkTUMDKFSokFKsAERERBATE5PhjYqjo6OzXAilFUAFChTg4cOH3L17l+nTpxMQEKBco1aref78OTdv3qR8+fI0adKELVu20KpVK0JDQ0lOTsbNzU2J79y5c6xfv155ftr/P0RHR6crhKKiopSiK02tWrWUc2mF0Ouvy87OThl907XPMmXKZCk3QgghhPhy6FQILV269I3nU1NTuX37NrNnz+a3335j2rRp2RKcEO/i7t27zJs3jz59+lC8eHH09PSoXLkylStXxtXVlebNm79xlFOj0WRpE4FXp8dVrVoVGxsbihUrRnh4OKGhobi4uAAQGxtL+/btMTMzw9nZGUdHR6pWrUrDhg212subN6/WY7VaTYsWLZQRoVeljVhlxcWLFwGoVKmSUoD5+PhQt27ddNeWKFECeDk688MPP3D//n22bNmCq6sr+fPnV+Lr2bMnrVu3Tvf8VzdrSJPRdL60OF7N++vvQWpqKnp6elnq8/VcCiGEEEKk0enbXtpfa98mf/78jBo16r0CEuJ9GRgYsG7dOkqUKEHv3r21zhUoUACAwoULY2pqCsDJkydp1KiRcs2JEyeytN7N2dmZn3/+GT09PerUqQNAnTp12L9/P+Hh4QwdOhSArVu38ujRI3bt2kXu3LkBlFGpN631qVChAv/884/W6EZ0dDR+fn4MGTJEa/RIFytWrMDCwkIZYTIzM+PGjRta7W/fvp09e/YwefJkAGrUqIG5uTmbN2/m4MGDzJ07Vyu+q1evaj0/PDycpUuXMmbMGAwNDbX6t7a25tSpU8oGEvAy5wDly5dXjp0/f17ZrALg9OnTfP311+/UpxBCCCHE67J171x9ff10U+iE+K+ZmZnRs2dPAgICSExMpEmTJuTPn59//vmHOXPm4ODgoNzvqlGjRvj6+qJSqShTpgzbtm1j3759+Pv7Z9q+kZER165d4/79+xQuXJg6derw/Plzdu/ezaJFi4CXhZCPjw/FixencuXKwMvtq5OSkti5cyfVq1fnypUrTJw4EeCNO6x5enrSuXNnfH196dKlC/Hx8fj6+vLs2bM3bgCQmppKbGws8HIE5d69e6xZs4Y///yTefPmKf+t9urVixkzZlCyZEkaNGjA5cuXGTNmDC4uLhgYGAAvp7+2atWK2bNnY2ZmRu3atZV+evXqxaBBg5g1axbNmjXj7t27jBw5klKlSmU4ItSzZ08GDhzInDlzcHNz49q1a4wbN45GjRppFUJLliyhXLlyVKlShbVr13L58mVle/6s9imEEEII8bpsKYSio6M5deoUCxYswN7ePjuaFOK9DBo0CEtLS9auXcuKFSt49uwZJUuWxM3NjT59+ijXTZ8+nenTpzNy5Eji4+OxsrIiMDCQxo0bZ9q2h4cHkydP5u+//yYkJAQDAwPq1q3L4cOHsbW1BV4WQmq1WmtEo0mTJly8eJFJkyaRkJCAubk5bdu2Zd++fZw/f56OHTtm2J+trS0LFy4kICCA1q1bY2hoSJ06dfj555+VQiUjd+/exdHREXi5nbiJiQm1atVi1apV2NjYKNd5enqSJ08eli1bxqRJkyhcuDDt2rXD29tbq73WrVsr24anTVFLe10zZsxg3rx5zJ07V9lEYtiwYRnG9e233zJ9+nR+//135syZg5mZGc2bN0/XX4cOHVi8eDFRUVFUrFiRRYsWKdvzZ7VPIYQQQojXqTTvsv/uawIDA5k9ezaVK1dm5syZ6RZHCyFEVlhbWzNx4kTc3d1zOhSuhm/n2ZOHOR2GEEIIkW3yGptR1qEpcXGJpKSoM7wmVy49TE2N3njNx8jMzAh9fd3uEJQtI0IdO3bE3d1d2RlLCCGEEEIIIT5m2VIIFS5cODuaEUIIIYQQQoj/RLZuliCEENkhbTc9IYQQQogPRbcJdEIIIYQQQgjxGZERISGEeAMDowI5HYIQQgiRreTftpekEBJCiExoNBrMqzjmdBhCCCFEtlOr1ajV77159CdNp0Jo06ZNWWq0VatW7xCKEEJ8XFQqFfHxSaSmfjrbhuYEfX09ChTIJ7nSgeRKd5Ir3UmudCe5+h+1WiOFkC4XjRgxQutx2h3pX70FUdoxkEJICPH5SE1Vf1L3T8hJkivdSa50J7nSneRKd5IrAToWQvv27VN+v3TpEsOHD6dfv364ublRtGhR4uLi2L9/P4GBgUycOPGDBSuEEEIIIYQQ2UGnQujVG6UOGDCAfv360atXL+VYsWLF6NixI8nJyfj5+dGwYcPsj1QIIYQQQgghskmWt8+Ojo6mcuXKGZ4rV64cN2/efO+ghBBCCCGEEOJDyvKucZaWlmzZsoV69eqlO7dmzRqsrKyyJTAhhPgY6OvL7dbeJi1Hkqu3k1zpTnKlO8mV7iRX6X3JmyZkuRD68ccfGThwINeuXaNRo0aYmppy//59du/ezT///MOCBQs+RJxCCPGf02g0FCiQL6fD+GRIrnQnudKd5Ep3kivdSa7+R6PW8DAu8YsshlSaV7d+09H+/fuZPXs2ERERaDQa9PT0sLOzY/DgwdSoUeNDxCmEEDni6bn7qBNf5HQYQgghRLbTM8qNoU1h4uIS0+2ilyuXHqamRhme+5iZmRnpPOL3TjdUdXZ2xtnZmefPn/P48WMKFiyIgYHBuzQlhBAfNXXiC9RPknM6DCGEEEJks3cqhODlpglhYWHExsbSpUsXbty4QcWKFcmfP392xieEEEIIIYQQ2S7LhZBarebXX39lw4YNaDQaVCoVTZo0Yc6cOVy/fp3ly5dTvHjxDxGrEEIIIYQQQmSLLG+ZMWfOHLZs2cL48eMJCwsjbYnR8OHDUavVzJgxI9uDFEIIIYQQQojslOVCaMOGDXh7e9OmTRsKFiyoHK9UqRLe3t6EhYVlZ3xCCCGEEEIIke2yXAjdv3+fSpUqZXiuWLFixMfHv3dQQvxXQkJCaNeuHba2ttjZ2dGmTRtWr16d5XZ+//13atWqhZ2dHefPn+fvv//m4MGD2R9wNgoODsba2jrTn0WLFmVbX4GBgTg7O2dbe0IIIYQQ7yvLa4TKlClDaGgodevWTXfu2LFjlClTJlsCE+JDW79+PRMmTGDkyJFUr14djUZDWFgY48eP5/79+/Tv31+ndp48eUJAQABeXl60bduWokWL8u2339K6dWucnJw+7IvIBocPH87weHZufOLp6Unnzp2zrT0hhBBCiPeV5ULohx9+4Ndff+XFixc0atQIlUpFTEwM4eHhBAUFMWLEiA8RpxDZbuXKlbRp04bvv/9eOVauXDnu3bvH0qVLdS6E4uPj0Wg01K5dG3Nz8w8V7gdTpEiRD96HkZERRkZGH7wfIYQQQghdZXlqXNu2bRk0aBDBwcH07t0bjUbDkCFDmDFjBp6ennTs2PFDxClEttPT0+P06dM8fvxY63jv3r1Zs2aN8vjZs2f4+/vj4uJC1apVadmyJbt27QIgPDxcmfL1ww8/4OHhgbOzM7du3WLWrFl4eHjg7u7O+PHjlfb27t2LtbU1O3fuVI5NmjSJbt26ARAVFUWfPn2oWbMmVapUwcXFhaCgIOXawMBAunTpwuDBg7G3t2fcuHEAnDp1is6dO2NjY4OTkxO+vr4kJCS8d54CAwPp1q0b8+fPp0GDBlStWpUuXboQHR2tXPPw4UPlhsoODg5MnTqVrl27EhgYqLSRlqebN29ibW3Nrl27aNu2LVWqVMHZ2Vkr5/ByPaKbmxs2Nja4ubmxZMkS1Or/3dDt3r17Wn16eXlx7do15fyIESPw9vbG09MTe3t7FixY8N65EEIIIcTnI8uFEECfPn04fPgw8+fPx8/Pj3nz5vHnn38ycODA7I5PiA+mZ8+eRERE0KBBA3r37s38+fM5d+4cxsbGlC1bVrluyJAhbNq0iVGjRhESEoKrqysDBw5k79692NnZsW7dOuDll/3AwEDWr19P8eLF8fT0JDAwkEaNGmltInLkyBFUKhXh4eHKsYMHD+Li4kJSUhKenp4ULFiQ1atXs3XrVpo0acLkyZO5dOmScv3x48cpXLgwmzdvxsPDg8jISLp37079+vUJCQlh6tSpXLx4EU9PT2Vnx/dx4sQJTp48yfz581m5ciUPHjzA19cXeLmlfp8+fYiJiWHhwoUEBQVx5swZjh079sY2J06ciJeXFzt27MDJyYkxY8Zw48YNANasWcOUKVPo378/27ZtY9CgQSxYsICpU6cC8PTpUzw8PABYvnw5y5Ytw9TUlHbt2nHv3j2lj127dlG3bl02bNhA8+bN3zsPQgghhPh8ZHlqnI+PD/369cPCwoL69etrnbty5QpTpkxh7ty52RagEB9KkyZNKF68OEuXLiUsLIzQ0FAALC0t+e2336hevTrR0dHs27ePuXPnKut9BgwYQGRkJHPnzsXV1RUzMzMATExMlJ0U9fX1MTQ0pGDBgjg7OzNr1izu3LlDiRIlCAsLw8XFRSmErl+/ztWrV3F2diYpKYmuXbvSuXNnZSqZt7c3Cxcu5PLly1oblXh7e2NsbAy83L6+Xr16eHl5Ka9h2rRpuLq6cuzYMRwcHDLNg52dXYbHw8LCMDQ0BCAlJYUpU6ZgYmICQIcOHfDz8wNerg08d+4cO3bsoFy5cgD4+/u/dXOEbt264eLiAsDgwYNZsWIFZ8+excLCgjlz5tC3b1+aNWsGgIWFBQkJCfj6+jJw4EC2bdtGfHw8fn5+5Mr18v/GJkyYQHh4OGvXrmXAgAHKe9KzZ883xiGEEEKIL5NOhdDt27eV3zdt2oSrqyv6+vrprjt06BBHjhzJvuiE+MBsbW2xtbVFrVYTGRlJaGgoy5cvp1evXuzZs4fLly8DUL16da3n1axZk+nTp+vUx9dff02xYsUICwujbt263Lx5Ez8/P9q2bUtsbCwHDx6kUqVKyvqiTp06sXXrViIiIrh+/TqRkZEAWtPCChUqpBRBABEREcTExGRY1ERHR7+xENq0aVOGx/Ply6f8XrhwYaUIAjA2NubFixdK3yYmJkoRlHb9q6NqGSlfvrxWewAvXrzg4cOH3L17l+nTpxMQEKBco1aref78OTdv3iQiIoLHjx9Ts2ZNrTafP3+uNWVPNm8RQgghRGZ0KoR8fX05dOiQ8jizReQajYZ69eplT2RCfEB3795l3rx59OnTh+LFi6Onp0flypWpXLkyrq6uNG/enOPHj2f6fI1Go4xE6OLV6XFVq1bFxsaGYsWKER4eTmhoqDIyEhsbS/v27TEzM8PZ2RlHR0eqVq1Kw4YNtdrLmzev1mO1Wk2LFi2UEaFXpY1YZUaXYsHAwCDTc/r6+lpFmq4yalOj0Sht+fj4ZLg7ZYkSJVCr1ZQtW5bff/893fm0USxInychhBBCiDQ6fZMbO3YsR44cQaPR8H//93/07duX0qVLa12jp6dHgQIF3viXZyE+FgYGBqxbt44SJUrQu3dvrXMFChQAXo5qmJqaAnDy5EkaNWqkXHPixAm++uornftzdnbm559/Rk9Pjzp16gBQp04d9u/fT3h4OEOHDgVg69atPHr0iF27dpE7d24AZVTqTWt9KlSowD///KNV1ERHR+Pn58eQIUO0Ro+yW8WKFXny5AnR0dHKKE9cXBwxMTHv1F6hQoUwMzPjxo0bWq9n+/bt7Nmzh8mTJ2NlZcXmzZsxNjZWCr0XL14wdOhQmjRpQtOmTd//hQkhhBDis6ZTIVSsWDFat24NgEqlwsnJSfmCKMSnyMzMjJ49exIQEEBiYiJNmjQhf/78/PPPP8yZMwcHBwdq1KgBvBzN8fX1RaVSUaZMGbZt28a+ffvw9/fPtH0jIyOuXbvG/fv3KVy4MHXq1OH58+fs3r1buVFpnTp18PHxoXjx4lSuXBmA4sWLk5SUxM6dO6levTpXrlxh4sSJACQnJ2faX9p9enx9fenSpQvx8fH4+vry7NkzLC0t35iL2NjYDI/nyZNHKQrfxMHBgWrVqvHTTz8xatQo8ubNi5+fH0lJSahUqrc+/3UqlYpevXoxY8YMSpYsSYMGDbh8+TJjxozBxcUFAwMDvvvuO+bPn4+3tzfDhw8nf/78zJkzh0OHDsmmLUIIIYTQSZY3S2jdujU3btzg4cOHlC9fnidPnuDv78+tW7do0qQJrVq1+gBhCpH9Bg0ahKWlJWvXrmXFihU8e/aMkiVL4ubmRp8+fZTrpk+fzvTp0xk5ciTx8fFYWVkRGBhI48aNM23bw8ODyZMn8/fffxMSEoKBgQF169bl8OHD2NraAi8LIbVarbWpQJMmTbh48SKTJk0iISEBc3Nz2rZty759+zh//nym29Pb2tqycOFCAgICaN26NYaGhtSpU4eff/75jdPaABwdHTM87uTkxLx589743DSBgYGMHTuWbt26kSdPHjp16sSVK1eUUa2s8vT0JE+ePCxbtoxJkyZRuHBh2rVrh7e3N/ByTdHy5cuZMmUKPXr0IDU1la+//pqgoCCttUdCCCGEEJlRabK4t25oaCg//vgjHh4e/PzzzwwePJjdu3djZWVFZGQkY8eOpW3bth8qXiHER+bhw4ecPXsWR0dHpfBJTk7GwcGB0aNHf/J/HEn46w7qJ5mPxgkhhBCfKj1jA/LXKUFcXCIpKdrrfXPl0sPU1CjDcx8zMzMj9PV1u0NQlu8j9Pvvv+Po6MiPP/5IfHw8e/bsoXfv3mzcuJHevXuzdOnSLAcshPh05cqVi8GDBzNt2jRiYmL4559/GD16NAYGBjRo0CCnwxNCCCGEyFCWC6HIyEh++OEH8ufPz6FDh0hNTeXbb78FoF69eu+8QFoI8WkqUKAAc+fO5cyZM7Rq1Yr27dtz//59li5d+tYd64QQQgghckqW1wjlyZOHlJQUAA4fPkyhQoWoWLEiAPfv39dpcbUQ4vNSu3ZtVq9endNhCCGEEELoLMuFkL29PUFBQcTHx7Nr1y5lN7kLFy4wa9Ys7O3tsz1IIYQQQgghhMhOWd4s4caNG/Tu3ZurV6/y1Vdf8ccff1CkSBHq1atHvnz5CAoKSnePISGE+FQ9PXcfdeKLnA5DCCGEyHZ6RrkxtCn8xW6WkOVCCF7e2PHBgwcULlxYOXbmzBkqV6781q16hRDiU6HRaN7pXkhCCCHEp0Kj1vAwLhG1Wrsk+BIKoSxPjYOXNzzMnTs3+/bt499//+Xbb7+lQIEC73zPECGE+BipVCri45NITf10/gHICfr6ehQokE9ypQPJle4kV7qTXOlOcpWeWq1JVwR9Kd6pEPr999+ZN28ez549Q6VSYWNjg7+/P3FxcQQFBcmGCUKIz0ZqqvqT+ktYTpJc6U5ypTvJle4kV7qTXAl4h+2zly9fTmBgIN27d2ft2rWkzazr0qULN27cICAgINuDFEIIIYQQQojslOVCaNmyZfTu3ZuBAwfy9ddfK8cbNmzIoEGD2L9/f7YGKIQQQgghhBDZLctT427fvk2tWrUyPFeuXDnu37//3kEJIcTHQtcFl1+ytBxJrt5OcqU7yZXuJFe6+5xz9SWv9XlXWS6ESpQowenTp6lbt266cxcuXKBEiRLZEpgQQuQ0jUZDgQL5cjqMT4bkSneSK91JrnQnudLd55grtVpDXAa7v4nMZbkQ+v777wkMDCRv3rw4OTkB8PTpU3bt2sW8efPo3r17dscohBA5QqVSERMTw7Nnz3I6FCGEECJTefPmpUyZMujpqaQQyoIs30dIo9EwevRo1q1bpzxOu89GixYtmDRpEnp6n99woxDiy3T58mWSkpJyOgwhhBAiU/ny5cPa2jpb7/nzJdxH6J1uqApw9epVjh49yuPHjzE2NqZmzZpYWVm9S1NCCPHRkkJICCHEx04Kof/54DdUBShbtixly5Z916cLIYQQQgghRI7JciHk4eGhTIV7nZ6eHoaGhpQpU4a2bdtSrly59w5QCCGEEEIIIbJblhfzWFhYcObMGU6fPg1A4cKFUalUnD17luPHj/Pw4UO2bt1KmzZtiIiIyPaAhRBCCCGEEOJ9ZXlEqEiRIpQsWZKgoCBKliypHP/333/p3bs3DRo0oE+fPvTv3x9/f3/mz5+frQELIYQQQgghxPvK8ojQhg0bGDhwoFYRBFC0aFH69u3LypUr0dfXp3379pw9e1anNkNCQmjXrh22trbY2dnRpk0bVq9endXQ+P3336lVqxZ2dnacP3+ev//+m4MHD2a5nZxw5MgRvLy8qFu3LtWqVaNp06YEBgaSkJCQ7X15eHgwYsQIAMLDw7G2tubmzZsAxMXFKTsCvo8OHTpgbW1NZGTke7f1uUtISMDNzY27d+8qx548eUJAQABNmzalWrVq1KtXDy8vL44ePZppO2FhYVhbW/Pjjz+mO5eUlETTpk25ffu2TjF9++236f77TfusvOknODhYx1edsdc/f69+VoUQQgghslOWC6GkpCRy586d4TmVSkViYiIAhoaGJCcnv7W99evXM3r0aNq1a8fGjRvZsGEDrVq1Yvz48cyaNUvnuNK+OHbq1ImtW7dSsWJF+vTpw/nz53VuI6fMmzeP3r17U6FCBRYtWsTWrVvp378/27Zt4/vvv+fevXsfrG87OzsOHz6s3Ah3ypQphISEvFebV69e5fTp01haWrJq1arsCPOzNmXKFJo2bUrx4sUBuHv3Lu7u7uzfv58hQ4awfft25s2bR6lSpfD09GThwoUZthMcHEzZsmU5ePBgus9Mvnz56NmzJ7/88stb47l+/TqPHz+matWqWsfTPitpP25ubumONW3a9B2z8NLrn7/AwEBGjhz5Xm0KIYQQQmQky4WQvb09AQEB3L9/X+v4gwcPmD17NnZ2dgAcO3aM0qVLv7W9lStX0qZNG77//nvKli1LuXLl8PDwoFu3bixdulTnuOLj49FoNNSuXRtzc/NMi7WPzcmTJ5kxYwYTJ05k6NChVKpUCQsLC5o2bcq6detQq9X83//93wfr38DAgCJFiqCvrw+8vC/U+9qwYQPlypXj+++/Z8uWLUpxLNKLiYlh06ZNdO3aVTk2cuRIDA0NWb16Na6urpibm1OlShV++eUXRo4cybRp0zh16pRWO/Hx8ezZswcvLy/y5cuX4ahey5YtuXz5Mn/99dcbYwoNDcXR0THd/cDSPitpP3nz5iV37tzpjr2P1z9/BQsWxNjY+L3aFEIIIYTISJYLIR8fH+7fv4+rqyvdu3dn6NChdOvWDRcXF+7fv8/IkSM5dOgQs2fPplOnTm8PQE+P06dP8/jxY63jvXv3Zs2aNcrjZ8+e4e/vj4uLC1WrVqVly5bs2rULeDllx9nZGYAffvgBDw8PnJ2duXXrFrNmzcLDwwN3d3fGjx+vtLd3716sra3ZuXOncmzSpEl069YNgKioKPr06UPNmjWpUqUKLi4uBAUFKdcGBgbSpUsXBg8ejL29PePGjQPg1KlTdO7cGRsbG5ycnPD19X3j9Lbly5djbW1NixYt0p0zNjbmxx9/5PDhw0RHRwMZTxV6/djevXtp27Yttra2VK1aFXd3d/78888M+391atyIESPYuHEjx44dw9ramr1791KxYkVu3bql9Zz27dszefLkDNtLTU1l8+bN1KtXj2+++YbExES2bt2qdc2DBw/w9vbGwcEBGxsbOnTowLFjx5Tz586do1OnTtjZ2VGzZk0GDBigTOm6efMm1tbWhIeHK9e/fmzEiBF4e3vj6emJvb09CxYsQK1WM2/ePL799luqVKmCvb09PXv25Pr160o71tbWrF+/nm7dumFjY4Ojo2O6Uck///yT9u3bU61aNRo0aMCMGTNITU0FIDk5GT8/P+rXr4+dnR3t2rXj8OHDGeYpzeLFi6lduzYmJiYAREdHc/jwYQYMGEC+fPnSXd+pUycsLCxYtmyZ1vGtW7fy4sULGjRoQKNGjVi/fr0SVxp9fX2+/fZb/vjjjzfGFBoaSsOGDd94TWbu3bvH4MGDqVGjBg4ODnh5eXHt2jXl/Jve+9c/f6D92Q4ODqZx48bK/1apUgV3d3dOnjyptJ+UlMTo0aNxcHDA3t6ekSNHMnToUJleJ4QQQoh0slwIlStXju3bt9O9e3eeP3/OxYsXAejVqxc7d+6kfPnyFCxYkBkzZtC+ffu3ttezZ08iIiJo0KABvXv3Zv78+Zw7dw5jY2Ot+xQNGTKETZs2MWrUKEJCQnB1dWXgwIHs3bsXOzs75S/ggYGBBAYGsn79eooXL46npyeBgYE0atSIsLAwpb0jR46gUqm0vlAfPHgQFxcXkpKS8PT0pGDBgqxevZqtW7fSpEkTJk+ezKVLl5Trjx8/TuHChdm8eTMeHh5ERkbSvXt36tevT0hICFOnTuXixYt4enpmOtJy4sQJqlevnml+6tSpA5BuBCAzFy5cYMCAATRr1owtW7awdu1azMzM+Omnn946VXHkyJFa052cnJwwMzNj8+bNyjVXr17lzJkztGnTJsM2/vzzT/7991+aNGlCmTJl+Prrr7UKWoAxY8bw/Plzli9fzpYtWyhbtiz9+vXj6dOnpKamKgVoSEgIixcv5vbt21keFdu1axd169Zlw4YNNG/enKVLl7Jo0SJGjBjBrl27mD17NteuXWPSpElaz5s8eTKtW7dm27ZtdOnShcDAQI4fPw7A6dOn6d27N9WrVyc4OJjx48ezevVq5syZA7z8I0FYWBhTp05l48aNuLm54eXl9cZ1avv27dMqOtK+1Nvb22d4vUqlonbt2uk+Dxs2bKBWrVqYmZnRtGlT7ty5k2G/Tk5OHDlyJNMbhD579oyTJ0/i6OiYacyZefr0KR4eHsDLAn/ZsmWYmprSrl07Zarem9771z9/Gblz5w6rV6/Gz8+PjRs3ki9fPkaMGKH89/Xzzz8TFhbGjBkzWL16NU+ePGHbtm1Zfi1CCCGE+Py90w1VTU1NGThwYKbnbWxssLGx0amtJk2aULx4cZYuXUpYWBihoaEAWFpa8ttvv1G9enWio6PZt28fc+fOxcnJCYABAwYQGRnJ3LlzcXV1xczMDAATExMKFiwIvPwLuKGhIQULFsTZ2ZlZs2Zx584dSpQoQVhYGC4uLkohdP36da5evYqzszNJSUl07dqVzp07Y2RkBIC3tzcLFy7k8uXLVKpUSYnf29tbmbozfPhwZVF72muYNm0arq6uHDt2DAcHh3SvPy4u7o1Tf0xNTQF4+PChTvnU19dn1KhRWqNxXbt2pVevXjx48EBZC5QRY2NjrelO8HI61ebNm+nXrx8AmzZtomrVqnz11VcZthEcHEzx4sWV4q558+ZMnjyZc+fOKZ+J69evY2VlhYWFBXnz5mXkyJG0aNECfX19EhISiIuLo2jRopibm2NhYYG/vz8PHjzQ6fWnMTExoWfPnsrj0qVLM3nyZBo1agSAubk5TZo00RoRBGjVqhUtW7YEwMvLi0WLFnHq1Clq1qzJsmXLqFatGj/99BMA5cuXZ+zYsTx48ICYmBi2bt3Kpk2blM9H9+7diYyMZNGiRcrn9lV37tzh3r17yugHvPw8ABQoUCDT12ZqaqqVj6ioKC5cuKCMSjo6OlKwYEHWrFmDi4uL1nOtrKx48eIFFy9epEaNGunaDg8Px8rKSvncZcW2bduIj4/Hz8+PXLle/l/LhAkTCA8PZ+3atQwYMOCN772hoWG6z9/rXrx4ga+vr1aOf/zxR2JjY3n+/Dm7du1i4cKF1K1bFwA/Pz+d/4gghBBCiC9LlguhN21gkHZDVUtLS+rWrYuBgYFObdra2mJra4tarSYyMpLQ0FCWL19Or1692LNnD5cvXwZIN3JSs2ZNpk+frlMfX3/9NcWKFSMsLIy6dety8+ZN/Pz8aNu2LbGxsRw8eJBKlSphbm4OoGy6EBERwfXr15Xdz9RqtdJmoUKFtIqYiIgIYmJilHVSr4qOjs6wEDIzM0s3LfBVaed0XSdRqVIlTExMmD9/PleuXCEmJkaJ/fWpUrpo06YNQUFBnD17FhsbG0JCQujVq1eG1z58+JD9+/fTpUsX5aa7TZs2ZcqUKaxevVophPr378/w4cPZtWsX1atXx9HRkebNm5MnTx7y5MlDz549GTduHDNnzqR27do0bNgQNze3LMVdpkwZrcfOzs6cPXuWgIAArl69ytWrV/nnn38oVqyY1nXly5fXemxsbMyLFy+AlwVHvXr1tM5/++23AOzYsQMg3XTQFy9eZFrUxMbGAihF/Ku/P378mEKFCmX4vEePHmm1uWHDBnLnzs0333wDoPy+fv16bt26pXymX20/re/XhYaGUr9+/QzPvU1ERASPHz+mZs2aWsefP3+uTO1803uvq1ffo7T/Ll68eKHct+zV//7y5Mmj8x9lhBBCCPFlyXIhFBISwt27d0lOTiZXrlwULFiQR48ekZKSgkqlUqaofPXVVyxdulTrS97r7t69y7x58+jTpw/FixdHT0+PypUrU7lyZVxdXWnevLkyLSkjGo1G+cuzLl6dHle1alVsbGwoVqwY4eHhhIaGKn89j42NpX379piZmeHs7IyjoyNVq1ZNt27i9YXharWaFi1aKCNCr8osDzVq1Hjja0xbP1GtWrVMr0lJSdG6vkePHjg5OVG9enVatGhBUlJShlsq6+Krr76iWrVqhISE8OzZM+7fv0/z5s0zvHbLli28ePGCJUuWaG10odFo2L59Oz4+PhgbG9O4cWP+/PNP/vzzT44cOcIff/zBrFmzWLt2LRUqVGDYsGF06tSJ0NBQ/vrrL8aNG8fChQvZtGlThv1mVOC9/t7Mnz+f2bNn07p1a+rUqUO3bt3Yt29fumlTGRXvaZ/pN33W0q5ZsWKFMoqY5vVNB14//mpxnVbsHzt2LNPi7/jx48qX+xcvXhASEsKLFy+UUZC0eNRqNWvXrmXw4MHK8bRcZRbToUOHmDFjRqav803UajVly5bl999/T3fO0NAQ4K3vvS4ye4/SNvx4NZ9CCCGEEJnJ8hqhgQMHYmBgwPTp0zl37hyHDx/m/PnzzJo1C1NTU/z9/dmyZQsqleqtozUGBgasW7cuw+2a0/7iXbhwYWXq0KuLouHl+prMpmhlxNnZmb/++ou//vpLWXtTp04d9u/fT3h4uFIIbd26lUePHrFq1Sr69etH48aNlZGZN+2qVqFCBf755x/KlCmj/KSkpDBx4kTu3LmT4XM8PDy4cuUKGzZsUI5NmzaNHj16cOrUKWbNmoWdnR1ff/018PKv/a9uvqBWq7lx44byOCgoCAcHBwIDA+nWrRv16tVT+tZlR7i0kZxXtWnThr1797Jz505cXV0zHeEIDg7GysqKzZs3s2nTJuVnzJgxJCUlsXnzZpKTk5k4cSI3btygadOmjB8/nr1796Knp8fBgwe5cuUKo0ePplChQnTs2JGZM2eycOFCoqOjiYyMVHYDfDUHry7Gz8zcuXP58ccfGTNmDO3bt8fW1pZr165laZe88uXLp9uOfcmSJbRt21b5Eh8bG6v1/gcHB2d6b5206V+vTnssV64cDRo0YPbs2cpue/Hx8Tg7OzN//nxWrVpFdHS0shbn4MGDPHz4kNGjR2vlfPPmzVhZWbFhwwatQjltSl3RokXTxRMdHc3Tp0+pUqWKzjl5lZWVFbdv38bY2Fh5/SVLlmTatGkcP378re89ZPz505W1tTUqlYozZ84ox5KTk5V1jEIIIYQQr8pyIRQYGMigQYNo2rSp8ldllUqFq6sr3t7eBAQEUKFCBby8vJT1PpkxMzOjZ8+eBAQEMGPGDC5dusSNGzc4cOAA/fv3x8HBgRo1alC+fHkaNWqEr68vBw8e5OrVq8yaNYt9+/bh6emZaftGRkZcu3ZN2eq7Tp06PH/+nN27d2sVQjt27KBIkSJUrlwZgOLFi5OUlMTOnTu5ffs2hw8fZsiQIQBv3HDA09OTiIgIfH19iY6O5vTp0wwdOpRr165haWmZ4XPs7Oz46aefGD16NH5+fkRGRuLm5sbTp0/p2LEjMTExTJgwQbne1taWsLAwDh06RExMDOPGjSM+Pl45X6JECS5fvsyJEye4efMmGzZsICAg4K2xpzE0NOTff//VKq6aNWvG48ePCQ4OpnXr1hk+7+LFi0RGRtKlSxesrKy0ftq3b4+FhQVr1qzBwMCA8+fPM2rUKM6cOcPNmzcJDg7m6dOn2NnZYWpqyrZt2/j111+Jjo7m6tWrbNy4ERMTE8qVK6esHVqyZAnR0dGcPHmSgICAt36BTlsX9s8//3DlyhVmzJjB7t27dcpJmp49e3LmzBkCAgK4du0aoaGhzJkzBycnJypUqECjRo0YPXo0+/fv58aNGyxYsIB58+Zluo18sWLFKFGihDKlK82ECRNITU2lQ4cO7Nmzh/j4eLp168bMmTMZM2YMLVq0UKbobdiwgRIlStC+fft0ee/evTuxsbHs3btXaTsiIoI8efJorUtKc+jQIerXr//Oxch3332HiYkJ3t7enD17lujoaEaMGMGhQ4ewtrZ+63sPGX/+dGVhYYGbmxvjxo3jr7/+4p9//mHkyJHcvXv3vQosIYQQQnyeslwI3blzJ936izTm5ubKVsvFihV749qXNIMGDWLChAkcP34cDw8P3NzcmDhxInXr1mXu3LnKddOnT8fV1ZWRI0fy3XffceDAAQIDA2nSpEmmbXt4eHDw4EGlWDIwMKBu3bro6elha2sLvCyE1Gq1sv02vNzAoUePHkyaNAk3Nzd+++03vv/+e2rWrPnGG7Ta2tqycOFCLl26ROvWrenbty9ly5Zl8eLFb1wv1b17d4KCgrhy5Qqenp506NCBhw8fKts49+nTh/379wMviy0XFxcGDhxIu3btMDQ0pFmzZkpb3t7e2Nra4uXlRatWrVi3bh2//fYbefPm1enmsq1atSIpKYnmzZsrO33lz58fV1dXTExM0q2RSRMcHEyBAgX47rvv0p3T09Pjhx9+ICoqihMnTjBjxgwsLCzo27cvTZo0YfXq1UydOpUaNWpgamrKggULuHXrFu3ataN169bcvHmTP/74g/z586NSqZgyZQoJCQm0bNmSX3/9lSFDhmQ61SvNlClTePbsGW3atKFLly5ERUXh6+vLgwcPlK2536ZSpUrMnj2bgwcP0rx5c3x9fenatSt9+/YFYMaMGXzzzTf8+uuvNG3alE2bNjFhwoRMi0cAFxcXjh49qnWsaNGirFu3jm+//RZ/f3+aNWvGnDlzcHBwwNPTk3379uHj48OtW7f4888/6dChgzIt7FXNmzenSJEirF69WjkWHh5O3bp1lalqrzp06BANGjTQKRcZMTY2Zvny5ZiamtKjRw/lZsBBQUHKup43vfeQ8ecvK8aNG0f16tUZMGAA7du3x8jICDs7u0/mvmJCCCGE+O+oNFm8g2abNm0wNzdn5syZ6c4NHDiQa9eusXnzZtavX8/cuXO1/hotsk6j0bBnzx6MjY2VUayc4OHhgb29vdZ6E/H+rly5QsuWLdm/f3+mO6W97u7du8qmFVkZ6UhOTqZ+/frMmDFDaz3R5+L58+f8+eef1K5dm/z58yvHv/32W7777rt3Xid3+fLlTLcbF0IIIT4G+fLlw9ramri4RFJSsmetbK5cepiaGmVrm/8FMzMj9PV1G+vJ8mYJAwYM4Mcff6R169Z88803FCpUiPv377N3714uX77MzJkziYiIwM/PL9N7zQjdqVQqZTewnLB3714uXbrEmTNnmDJlSo7F8bkqV64czZs3Z/ny5ToXmcWLF6d3795Z7mvTpk1YWVl9lkUQvBzx9fX1pVatWvTr1w99fX3Wr1/P7du33zhyLIQQQogvU5ZHhACOHj1KYGAgZ86cITU1lVy5cinTUWrUqMH+/fs5fPgwI0aM0HkLbfFx6tChA1evXsXHx4dWrVrldDifpcePH9OuXTsWL178xvs8vY+nT5/SunVrFi5ciIWFxQfp42Nw6dIl/Pz8OHfuHKmpqVSuXJlBgwal29I7K2RESAghxMdORoT+JysjQu9UCKVJTk5W7nfytjUaQgjxKZJCSAghxMdOCqH/+aBT4zJaWH737l2txyVLlsxqs0IIIYQQQgjxn8lyIeTs7PzWBdqXLl1654CEEOJj8vrNeYUQQoiPjfxb9W6yXAj99ttv6Qqhp0+fcuLECcLDw/ntt9+yLTghhMhJGo0m09sFCCGEEB8TtVqDWv3OK16+SO+1Ruh1EydO5P79+0ybNi27mhRCiBwVH59EauqnMzc6J+jr61GgQD7JlQ4kV7qTXOlOcqW7zzlX2V0IyRqhLHJ2dqZfv37Z2aQQQuSo1FT1J/UPQE6SXOlOcqU7yZXuJFe6k1wJgGzd6u3s2bPkypWttZUQQgghhBBCZLssVy0+Pj7pjqnVau7evcvx48f5/vvvsyUwIYQQQgghhPhQslwIhYeHpzumUqnInz8/vXr1wsvLK1sCE0KIj4Gu84y/ZGk5kly9neRKd5Ir3UmudPep50o2RMhe2bpZghBCfE40Gs1bbxcghBBC/Fc0GjUPHz79T4oh2SxBB48fP+b69ev8v/buPK6m/P8D+Ou2k4oS2UsoS+kmJWVrjCxZhyayfO1jz66xJFtJ1giRX1L2smQZOzPZyr6ksmSdyVZElpZ7fn94dKarZW5EuK/n43EfD/dzzvmc93nfS719PudzjI2NoaOj87ndERF9MyQSCd69OweZ7FVJh0JEREpORUUHWlo2UFGRcFSomChcCF25cgWBgYFo27YtunTpAgDYsGED/P39kZGRAU1NTYwaNQoDBw78UrESEX11MtkryGQvSzoMIiIiKmYKjRvFx8ejT58+uHHjBkqXLg0AuHr1KubNm4dq1aohICAAw4cPx+LFi3H48OEvGjAREREREdHnUmhEaPXq1TA3N0dISAhKlSoFAAgNDQUA+Pv7w9zcHADw7NkzbNiwAa1bt/5C4RIREREREX0+hUaEYmNj0adPH7EIAoDo6GhUq1ZNLIIAwNHREXFxccUfJRERERERUTFSqBB68eIFjIyMxPe3b99Gamoq7Ozs5PYrVaoUMjIyijdCIiIiIiKiYqZQIVS2bFk8f/5cfH/mzBlIJBLY29vL7Xf79m3o6+sXb4QEANi9ezdcXV1hZWUFqVSKX375BZs3by62/gVBwI4dO+Q+529BRkYGli9fjrZt26JBgwZo3LgxBg4ciDNnzpR0aIiMjISZmZn4/u+//8bevXs/q0+ZTIaWLVuiQYMGSElJUeiYPn36YMqUKZ98zilTpqBPnz4K71+U82VmZiIkJOQTI/tXamoqtm3b9tn9EBEREeVQqBCytbXF1q1bIQgCsrKyEBERAU1NTTRr1kzcJyMjA+Hh4bC2tv5iwSqr7du3w8vLC66urtixYwciIiLQpUsXzJkzB8uXLy+Wc8TGxmLKlCl4+/ZtsfRXXKZNm4Y9e/ZgypQp+OOPPxAaGoqqVatiwIABOH36dInG1r59e0RHR4vvJ0+ejL/++uuz+jx16hRevnwJAwMDbN++/XNDVMjUqVMREBCg8P4BAQGYOnWqQvvu2bMHPj4+nxqayM/PD7t37/7sfoiIiIhyKLRYwrBhw/Drr7+idevWEAQBf//9N0aMGCE+NygiIgLh4eFISkqCn5/fFw1YGW3cuBG//PILunfvLrbVrFkTjx8/RmhoKEaOHPnZ5/gWn6v7+vVr7N69GwEBAWjZsqXY7u3tjfj4eISHh+cZlfyatLS0oKWlVax9RkREoFGjRqhatSq2bduGwYMHf/EHehb1+V9ly5ZVeN/i+l59i99PIiIi+r4pNCJUu3ZtbN26FXZ2dqhduza8vLwwatQocfuSJUuQmpqKFStWoG7dul8sWGWloqKCixcv4uVL+WeZDBkyBFu2bAEArF+/HlKpVG5ERyaToXnz5ggPDwcABAcHo3Xr1mjQoAGcnJywYsUKCIKAs2fPom/fvgCAn376CZGRkQCACxcuwN3dHZaWlmjZsiW8vb3x+vVrsX8nJycEBQVhyJAhaNiwIZycnHD48GEcPnwYzs7OsLKywsCBA+Wm2xUUQ2HXHh0djaysLLn2ZcuWYfr06eL7x48fY+zYsbCxsYGdnR1+++033L17V+6Y3bt3o1OnTrC0tMRPP/2E9evXi9vMzMzE686vLSAgAL1798bYsWNhbW2N2bNny02N69OnD2JiYrBjxw44OTkp9Hl87OXLlzh8+DAcHBzg7OyM+/fv4+TJk3L7ZGRkYN68ebC3t0ejRo2wYMECyGT/Pu357NmzqFevHg4dOgRnZ2dYWlqib9+++OeffzBnzhzY2NjA3t4eK1euFI/JPTUu5/gTJ07AxcUFDRo0QNu2beWWxc89NS47OxsLFixAixYtxH03bdoE4MPUQU9PTzGXZ8+ezTePALBt2zZ07NgRlpaWsLKyQq9evXD16lUxvh07diAmJkbMd3Z2NkJCQuDs7AwLCws4OzuL5819HUFBQbCzs0O3bt3k8kRERESkUCEEALVq1cK8efOwevVq9OzZU27b9u3bceTIEbRo0aLYAyRg0KBBiIuLQ/PmzTFkyBAEBQXhypUr0NHRgYmJCQCgY8eOyMzMxMGDB8XjTp06hdTUVLi4uODo0aNYvXo1vL29cfDgQUyYMAErV67E7t27IZVKxalR27ZtQ/v27REfH4/+/fujWbNm2L17N/z9/XH9+nUMGDBArnAJDAxE+/btERUVBXNzc0yaNAmrVq3CggULsGrVKly9ehVr1qwBgEJjyE+ZMmXQq1cvbN68Gc2aNcP48eOxefNm3L9/HxUrVkTFihUBAG/evBF/kQ8LC8OGDRtQrlw5uLq64vHjxwCAffv2YfLkyejcuTN2796NcePGwd/fP0/xU5jY2FiUL18eu3btynNPTUBAAKRSKdq1a4ft27f/5+eRnz179iAzMxPOzs6wtbWFgYFBnvvA5syZg3379sHX1xebN29GcnIyzp07J7dPdnY2Vq5cCX9/f6xfvx7x8fHo3Lkz1NXVsW3bNri5uWHJkiVISEjIN46c4mbq1KnYs2cP6tSpg8mTJyM9PT3Pvhs3bsQff/yBxYsX48CBA+jduzdmzpyJc+fOoX379vj9998BfFhlUiqV5pvHQ4cOYdasWRg0aBD279+PkJAQvH//HtOmTQPwYepeu3btIJVKxamIvr6+CAwMxMiRIxEVFQV3d3fMnTtX7n6k7OxsnDhxAlu2bMHcuXOhoqLwP3dERESkBBSaGvdfcn4hpS+jbdu2MDIyQmhoKE6ePIkTJ04AAIyNjTFv3jw0atQI+vr6cHJywu7du9G5c2cAEEcn9PT0cP/+fWhoaKBKlSqoXLkyKleujAoVKqBy5crQ0NCAnp4eAEBfXx9aWloIDg6Gg4MDfvvtN/FcCxcuROvWrRETEyOuGNiyZUt06dIFAODq6oojR45g7NixsLS0BAA0bdoUN2/eBIBCYyjItGnTYGVlhYiICBw8eBB79uwB8GGp9nnz5qFixYrYu3cv0tLSsGDBAqipffhKz507F2fPnsXWrVsxatQorF+/Hu3bt8fAgQPF60lPTy/y1LbRo0eLU8kuXLggtpctWxbq6urQ0tISFwwp7PPIT0REBKysrMR8tGvXDps3b8aTJ09QoUIFvH79GpGRkfDy8hL/02HevHn5LhwxZswYWFhYAACaNGmCy5cvY9KkSZBIJBg6dCgCAwNx8+ZNucUecvPw8BCnHQ4fPhwHDhxAYmKiWMzkuH//PkqXLo2qVauiQoUK6N27N2rWrAkTExNoaWmJuTI0NCwwj0+fPsXcuXPRqVMnAECVKlXQvXt3zJo1C8CHqXtaWlpQV1eHoaEhXr9+jU2bNmHKlCno2LEjgA+f58OHDxEUFIR+/fqJ5xkwYACMjY3zvUYiIiJSbsVSCNGXZ2VlBSsrK8hkMsTHx+PEiRMICwvD4MGDcejQIRgYGOCXX37BsGHD8OTJE5QuXRqHDx/GsmXLAACdOnVCREQEnJ2dUatWLTRt2hTOzs4FFiFxcXG4d+9enl98gQ+rA+YUQjVq1BDbc54zVb16dbFNS0tLnBpX1BhyuLi4wMXFBe/evcPFixdx6NAhscDZunUr4uLi8PLlSzRu3FjuuPfv3+P27dsAgMTERHTo0EFuu6ura6Hn/ZiBgUGR7qcp7PP4WHx8PK5fvy6OggBAhw4dEBYWhm3btmHEiBFISkpCZmamWOAAgKamJurVq5env9yfS06hknOvUU7xV9hS9zVr1hT/XKZMGQAfVoD7mLu7Ow4fPowWLVqgbt26cHBwQIcOHWBgYFBg3x/nsXHjxrh9+zZWrFiBO3fu4N69e0hISChwKtudO3eQmZmJRo0aybXb2tpi/fr1clMxWQQRERFRQVgIfeOSk5OxevVqDB06FEZGRlBRUUG9evVQr149tG7dGi4uLoiNjUXbtm3h6OiI8uXLY8+ePShbtix0dXXh6OgI4MNIz65du3Dx4kWcPHkS0dHRCA0NxahRo/JdbEEmk6Fjx47iiFBuuZdIzxmBya2gm/uLGsPZs2dx9OhR8T4TLS0t2Nvbw97eHqamppg1axZSUlIgk8lgYmIid99LjtKlSxcYZ2E+vicp5/xFUdjn8bGcKXrz5s3Ls8ra9u3bMWzYMDGvH99Tld+1fdxW1GlhGhoaedryu5fL2NgYBw8eRExMDE6ePInjx49jzZo18PHxQdeuXfPt++M8RkVFiaM71tbWcHNzQ2JiojgipEgcAMTCKfe1a2pq5n+BREREpPQ4af4bp6GhgW3btuV7H42uri4AoHz58gAAVVVVdOnSBYcOHcKBAwfQuXNnqKqqAviwUMCmTZvQqFEjjB49Glu3bkWPHj2wb98+AHmLl9q1a+PWrVuoUaOG+MrKyoKPjw/++eefT7qW/4rhY69fv0ZISAguX76cZ1vOdKkyZcqgTp06+Pvvv6GjoyPGWrlyZSxcuBCxsbEAAFNTU/Hm+xw+Pj4YPXo0AEBdXV1uIYh79+590jXmVtjnkVtmZiZ2794NR0dH7Nq1Czt37hRfw4cPx99//40TJ07AxMQEmpqaclPysrKyEB8f/9mxfqrQ0FAcPHgQDg4OmDRpEqKiomBvb1/g9yo/QUFB6N69O3x9feHu7o7GjRvjwYMHAP4tenL3Y2pqCnV1dZw/f16un3PnzsHQ0LDAqYdEREREuXFE6Bunr6+PQYMGYenSpUhPT0fbtm1RpkwZ3Lp1C4GBgbCzs4ONjY24f7du3bB27Vqoqqpi0qRJYvv79+8xf/58aGtrw8bGBsnJyYiNjRWPzRk5iY+PR7ly5TBgwAC4u7vD29sbvXv3RlpaGry9vfHu3btPnm70XzF8rFWrVrC1tcWwYcMwatQoNGnSBNnZ2bh69SoWLlyIwYMHQ0NDA506dUJQUBBGjx6NiRMnokyZMggMDMSff/6JMWPGAPiwwt6oUaNgaWmJFi1a4PLly9i0aZM46mBlZYVt27ahcePGEAQBPj4++Y6KFEZbWxuPHj1CcnIyjIyMABT8eeR27NgxpKamon///qhTp47ctsqVKyM0NBSbN29Gq1at0Lt3byxbtgyGhoYwNTXFunXrxAUhSkJKSgpWrFgBLS0tmJub486dO7hx44a4CmHO9+ratWuoVatWvn1UqlQJFy5cwPXr16Gjo4OjR48iLCwMwIfpe5qamihdujSePHmCBw8eoFq1avj111+xbNkylC1bFhYWFoiOjsbGjRsxbty4L77cOBEREf0YWAh9Bzw8PGBsbIytW7ciPDwc7969Q+XKldGuXTsMHTpUbl9jY2M0bNgQMpkMpqamYnuPHj3w4sULBAYG4p9//oGenh6cnZ0xYcIEAECdOnXQokULeHh4YNy4cRgwYADWrl2LpUuXomvXrihdujTs7e0xefLkIhcIisbwMRUVFQQFBSE4OBgbN26En5+feF1jxowRn6uko6ODsLAw+Pn5YeDAgcjOzkb9+vWxbt06MQdOTk6YNWsW1qxZg/nz56NKlSrw9PQUF3qYOXMmZs6cCVdXV1SoUAFjxoxBcnJyka7Pzc0NkydPRqdOnXD69GmoqqoW+HnkFhkZCRMTEzg4OOTZVqZMGfTo0QPr16/H33//jfHjx0NTUxOzZs1Ceno62rVrBycnpyLFWZxGjhyJzMxMzJkzB0+fPoWhoSF69uwpfi+bNGmChg0bws3NDQsWLMi3j+nTp2PGjBno3bs3NDQ0YG5uDj8/P4wdOxZXr16FjY2NOLLm4uKCgwcPwtPTE+XKlYO/vz+ePXsGY2NjzJgxo8j3fREREZHykgh8UuEPRRAEtG7dGr/99ht69OhR0uEoPX4e3783b45BJnv53zsSERF9QSoqeihduhVSU9ORlfXln42npqaCcuW0v9r5iou+vjZUVRW7+4cjQj+IzMxMHD16FGfOnMGbN2/yrJBGXxc/DyIiIqJvGwuhH4S6ujrmzJkDAFiwYIF4bwaVDH4eRERERN82FkI/kL/++qukQ6Bc+HkQERERfbu4fDYRERERESkdFkJERERERKR0ODWOiKgQKio6JR0CERERfx59ASyEiIgKIAgCtLTyf+AvERHR1yYIMshkfPJNcWEhRERUAIlEgrS0t8jO/n6en1ASVFVVoKtbirlSAHOlOOZKccyV4r73XMlkAguhYsRCiIioENnZsu/qQXIliblSHHOlOOZKccyV4pgrArhYAhERERERKSEWQkREREREpHQ4NY6IqBCqqvz/ov+SkyPm6r8xV4pjrhTHXCnuR8kV7xUqHhJBEJhFIqJ8CIIAiURS0mEQERHJkQkCUlPSv2gxpKamgnLltJGamv5d3U+lr6+tcKHLESEiogJIJBLcePUSb7KySzoUIiIiAEBpNVXU1dGDioqEo0KfiYUQEVEh3mRl43V2VkmHQURERMXs+54gSURERERE9AlYCBERERERkdJhIUREREREREqHhRARERERESkdFkJEAKZMmQIzM7NCX58jMjLym+gjNycnJwQEBBS4XRAEhIaGonPnzrC0tESjRo3g7u6OP/74o9hi+NJSU1Oxbdu2kg6DiIiIvkFcNY4IwNSpUzF+/HjxvaOjI37//Xe0b9++BKOS1759ezRr1uyrnW/ZsmXYtm0bfv/9d1hYWODdu3fYv38/PDw84Ovriy5duny1WD6Vn58fHj58iB49epR0KERERPSNYSFEBEBHRwc6Ojp52gwNDUsoory0tLSgpaX11c63ceNGDBs2TK4YrF27NpKSkrB+/frvohDi86KJiIioIJwaR6SgY8eOoVu3brC0tMTPP/+MJUuWICMjQ9yenp6O2bNnw9HREVKpFL1798a1a9fk+oiMjETr1q1hYWGBbt264fLly+I2JycnBAcHY9SoUZBKpbCzs8OcOXOQlZUlHpt7atx/nW/btm3o2LEjLC0tYWVlhV69euHq1asKX6+KigrOnDmDd+/eybVPmzZNbkqdmZkZIiMj5fbJ3RYQEICePXtixYoVsLOzg42NDTw9PfH69Wu5/cPDw+Hq6goLCwt07NgRR44ckevz+PHjcHV1hVQqhaOjI3x8fORiMzMzw7Jly9CqVSs4Ojpi/Pjx2LFjB2JiYop1SiERERH9GFgIESngzz//hIeHB1xdXbFnzx54eXlh//79mDhxoriPh4cH/vzzT/j4+GDnzp2oVq0aBgwYgJcvX4r7bN26FYsWLUJERAQ0NDTg4eEhd56lS5eicePG2L17NyZNmoSwsDDs2bMn35gKO9+hQ4cwa9YsDBo0CPv370dISAjev3+PadOmKXzNQ4cOxbFjx+Dg4IBRo0Zh/fr1SEhIgIGBAapWrVqk/F29ehXR0dFYt24dVqxYgdjY2DzX7u/vj86dO2PXrl1o0aIFRo4ciQsXLgAADh06hGHDhqFly5aIjIyEt7c39u3bh3Hjxsn1sXHjRixbtgzLly/HzJkz0a5dO0ilUkRHRxcpXiIiIvrxcWockQJWrVoFV1dXuLm5AQCqV68Ob29v9OvXDw8fPkRGRgb+/PNPBAcHw9HREQAwc+ZM6OrqIjU1Vexn7ty5MDU1BQAMHDgQI0eOxPPnz2FgYADgw71Jffv2BQBUq1YNGzZswIULF/JMQ7tz506h5ytbtizmzp2LTp06AQCqVKmC7t27Y9asWQpf8//+9z/UrFkTmzZtQnR0NA4ePAgAsLCwgK+vL2rVqqVwXxKJBEuWLEHFihUBADNmzMDgwYNx584d1KxZEwDQrVs3uLu7AwAmTJiAmJgYhIWFwdraGkFBQfj5558xfPhwAICJiQkEQcCIESNw69YtMZbOnTvDwsJCPK+WlhbU1dW/qSmORERE9G1gIUSkgLi4OFy5cgXbt28X23LuP7l9+zbevn0LALCyshK3a2pqwtPTEwDEkQ1jY2Nxu66uLgDITe/KKZJy6OjoIDMzM088iYmJhZ7P2NgYt2/fxooVK3Dnzh3cu3cPCQkJkMlkRbru5s2bo3nz5sjMzMTVq1dx7NgxhIeHY9CgQTh48CA0NDQU6sfY2FgsggDA2tpavI6cQsjOzk7uGKlUipMnT4r7dejQQW67ra2tuC2nEKpRo0aRro+IiIiUFwshIgXIZDIMGjQIXbt2zbPN0NAQp06dUqgfVVXVPG25b+jPr7DI74Z/NbXC/+pGRUVhypQp6NixI6ytreHm5obExESFR4Ti4+OxceNGTJ06FZqamlBXV4e1tTWsra3RqFEjDB06FAkJCXKjLzly7mnKTV1dXe59dnY2APl8fHxN2dnZUFH5MHs3vxzkFHW5j/uai0kQERHR9433CBEpIGe1tBo1aoiv5ORk+Pn5IT09XRzJyb0YQVZWFpycnL7Ic3f+63xBQUHo3r07fH194e7ujsaNG+PBgwcAFF9JbcuWLXkWLAA+jFJJJBJxOp+6urrcwgf37t3Lc0xSUhJevXolvr948SIAoF69emLbxws5XLx4EfXr1wfwYSGEnFG1HOfOnQOQdxQtN4lEUuA2IiIiUm4shIgUMHjwYBw4cADLly9HUlISTp8+DU9PT7x69QqGhoYwMTFBmzZt4O3tjTNnziApKQnTp0/H+/fvxSlcxem/zlepUiVcuHAB169fx/379xESEoKwsDAAkFvpriDm5ubo1KkTpk6dijVr1uDWrVu4e/cu/vjjD/z+++/o2rUrKleuDODD9Lxt27bhxo0biIuLw8yZM/OMbL158waTJk1CYmIiTp06hVmzZqF9+/aoUqWKuM/69esRFRWFpKQkzJ8/HwkJCejXrx8AiFPxAgMDkZSUhGPHjmH27Nlo1apVoYVQ6dKl8eTJE7EIJCIiIsrBqXFECmjbti0WL16M1atXY9WqVShbtiycnJwwYcIEcZ958+bBz88PY8aMQUZGBho2bIjg4GDo6+t/kZgKO9/06dMxY8YM9O7dGxoaGjA3N4efnx/Gjh2Lq1evwsbG5j/79/HxQYMGDbBr1y6sXLkSmZmZqFGjBnr06CEWKMCHRRpmzpwJV1dXVKhQAWPGjEFycrJcX5UqVULdunXh7u4OVVVVdOzYUS53AODm5oaQkBAkJibC3NwcwcHBMDc3BwA4Oztj0aJFWLlyJQIDA6Gvrw8XFxeMHj260Gvo0qULDh06BBcXFxw8eFDuPiUiIiJSbhKBTxwkoi8oICAAO3bswNGjRwvcx8zMDD4+PujWrdtXjEwx51NT8Do7731PREREJaGMqhoaldNHamo6srKKtghSUaipqaBcOe0vfp7ipq+vDVVVxSa9cWocEREREREpHRZCRERERESkdDg1joioEJwaR0RE3xJOjSscp8YREREREREVgoUQEREREREpHS6fTURUiNJqqiUdAhERkYg/l4oPCyEiogIIgoC6OnolHQYREZEcmSBAJuNt/p+LhRARUQEkEgnS0t4iO/v7uUm0JKiqqkBXtxRzpQDmSnHMleKYK8X9KLmSyVgIFQcWQkREhcjOln1Xq+WUJOZKccyV4pgrxTFXimOuCOBiCUREREREpIRYCBERERERkdLh1DgiokIo+lA2ZZaTI+bqvzFXimOuFMdcKY65kqfs9xpJBEFQ3qsnIiqEIAiQSCQlHQYREdEXIZMJSE1Nz7cYUlNTQbly2khNTf+u7qfS19dWuNDliBARUQEkEgnO3k7Dq7fZJR0KERFRsdIppQo7U12oqEiUdlSIhRARUSFevc3GizdZJR0GERERFTNOkCQiIiIiIqXDQoiIiIiIiJQOCyEiIiIiIlI6LISIiIiIiEjpsBAi+gb16dMHU6ZMyXfblClT0KdPHwDAgwcPYG1tjUmTJuXZ79q1a7CwsMDGjRvz7ScgIABmZmbiq27durC1tUX//v1x9uzZ4rsYAJGRkTAzMyvWPomIiIg+Bwshou9YtWrVMG3aNOzatQv79u0T21+9egUPDw84OTmhV69eBR5vZGSE6OhoREdH49ixYwgODkbFihXRv39/nDhxotjibN++PaKjo4utPyIiIqLPxeWzib5z3bp1w4kTJzBz5kxYW1vDyMgIv//+OwBgzpw5hR6rqqoKQ0ND8b2RkRF8fX3x4sULeHt74+DBg1BT+/x/JrS0tKClpfXZ/RAREREVF44IEf0AZs2ahVKlSmHq1KnYunUrjh07hkWLFkFHR+eT+uvXrx8ePXqES5cuiW0RERFo164dLC0t0a5dO6xfvx4y2b9Pmt65cyc6dOgACwsLNGvWDHPnzkVGRgaAvFPjUlJSMHbsWNjY2MDOzg7+/v7o27cvAgICAHyYtve///0PQUFBaN68OSwsLNC7d2/cvn1b7OPVq1eYPn06mjRpgkaNGqFv3764evWquD0gIAC9e/fG2LFjYW1tjdmzZ39SLoiIiOjHxEKI6Aegp6eH+fPn49SpU/D29sb48eNhaWn5yf3lFC3x8fEAgC1btsDPzw8jR47E3r174eHhgTVr1sDf31/cb9q0aRg1ahQOHDiAefPmYdeuXVi7dm2evmUyGYYOHYp79+5h7dq1WLduHS5duoSYmBi5/c6dO4fz588jKCgIGzduxPPnz+Ht7Q0AEAQBgwcPxoMHD7B69Wps3boVVlZW6NmzJ+Li4sQ+YmNjUb58eezatUu8r4qIiIgI4NQ4oh9Gw4YNUaFCBTx+/BhNmjT5rL5yRpJevXoFAAgMDMSwYcPQoUMHAB/uTXr9+jW8vb0xZswYPHz4EBKJBFWqVEHlypVRuXJlBAcHo0yZMnn6jomJwZUrV7B//37UrFkTALBkyRI4OTnJ7ZeVlQU/Pz/o6ekBANzc3LBgwQIAwJkzZ3Dp0iWcOXMGZcuWBQCMGzcOFy5cQGhoKHx9fcV+Ro8e/ckjY0RERPTjYiFE9A1SU1OTm3aWm0wmy/e+ndmzZyMrKwu1a9fGhAkTEBER8cn35eQUQLq6ukhJSUFycjIWLVqEpUuXysXx/v17PHz4EM2aNYNUKkX37t1RtWpVODg44KeffkKDBg3y9B0XFwc9PT2xCAKA8uXLw8TERG6/8uXLi0UQ8KE4y8zMBABcv34dgiCgVatWcsdkZGTg/fv34nsDAwMWQURERJQvFkJE3yBdXV2kpaXlu+3ly5dyBQIAREVFISIiAitWrEDVqlXRvXt3zJ8/H15eXp90/uvXrwMA6tatKxZknp6eaNq0aZ59K1WqBA0NDYSGhiIuLk5che63335Dly5d4OPjI7e/qqpqgUVebhoaGgVuk8lkKFOmDCIjIws9jgs0EBERUUF4jxDRN6h+/fq4du2auNhAjoyMDFy5cgUWFhZi27179+Dl5QU3Nze0bt0a5ubmGDNmDDZu3Ijjx49/0vnDw8NRrVo1SKVSGBgYQF9fHw8ePECNGjXE1/Xr17FkyRIAwIkTJ7B8+XLUq1cPQ4YMQWhoKEaPHi23pHcOc3NzvHr1Sm7hg9TUVNy7d0/h+OrUqYPXr18jMzNTLqY1a9bgyJEjn3TNREREpFxYCBF9g7p37w6ZTIaRI0fi4sWLePToEWJiYjB8+HCoqamhe/fuAD4URmPHjkWlSpXg6ekpHj9w4EA0btwYnp6eePbsWYHnyc7OxtOnT/H06VM8fvwYV65cwdSpU/HXX39h5syZkEgkkEgkGDx4MDZs2ICwsDDcv38fhw4dwsyZM6GlpQUNDQ2oq6tjxYoVCAkJwYMHD3Dt2jUcP34cUqk0zznt7OzQsGFDTJo0CZcuXUJ8fDwmTJiAt2/fQiKRKJSfZs2aoW7duhg7dizOnDmDe/fuwcfHB5GRkTA1NS1itomIiEgZcWoc0TdIX18fW7ZswdKlSzFq1Ci8ePECZcuWhaOjI2bPni1OjfPz88PNmzexbds2uWlgKioq8PX1RefOnTFlyhSsWbMm3yIjOTkZjo6O4jF6enqwtbXFpk2b5FadGzBgADQ1NbFhwwb4+vqifPnycHV1xejRowEATZs2xdy5c7Fu3TosXrwYWlpaaNGiBaZMmZLv9QUEBGDWrFn43//+B01NTfTq1Qt37tyBurq6QvlRVVXFunXrsGDBAnh4eODt27cwNTXF8uXLYW9vr1iSiYiISKlJBEEQSjoIIlIeKSkpuHz5MhwdHcXCJyMjA3Z2dvDy8kKXLl1KNsCPHL6Wihdvsko6DCIiomJVtrQaWjcoh9TUdGRl5b13V01NBeXKaRe4/Vulr68NVVXFJr1xRIiIvio1NTWMHTsWbm5u6NmzJzIzMxEcHAwNDQ00b968pMMjIiIiJcF7hIjoq9LV1cWqVatw6dIldOnSBb/++iuePXuG0NBQ6Ovrl3R4REREpCQ4IkREX12TJk2wefPmkg6DiIiIlBhHhIiIiIiISOlwRIiIqBA6pVRLOgQiIqJix59vLISIiAokCALsTHVLOgwiIqIvQiYTIJMp7wLSLISIiAogkUiQlvYW2dnfz7KhJUFVVQW6uqWYKwUwV4pjrhTHXCmOuZLHQoiIiAqUnS37rp6fUJKYK8UxV4pjrhTHXCmOuSKAiyUQEREREZESYiFERERERERKh4UQEREREREpHd4jRERUCFVV/n/Rf8nJEXP135grxTFXimOuFPej5krZFz34VBJBEJg1IqJ8CIIAiURS0mEQEREVSpDJkJL6pliLITU1FZQrp43U1PTvamEJfX1thQtdjggRERVAIpEg/fIByNJTSzoUIiKifKlol4N2Q2eoqEg4KlRELISIiAohS09FdtrTkg6DiIiIitmPNUGSiIiIiIhIASyEiIiIiIhI6bAQIiIiIiIipcNCiIiIiIiIlA4LIaJiMHLkSPTo0SNPu6urK8zMzBATEyPXvnv3bpibm+P58+f/2XdkZCTMzMyKFE9AQADMzMzEV926dWFra4v+/fvj7NmzReqrOJiZmSEyMvKrn5eIiIioICyEiIqBvb09bty4gXfv3oltL168wNWrV1GpUiX89ddfcvufO3cO5ubmMDAw+GIxGRkZITo6GtHR0Th27BiCg4NRsWJF9O/fHydOnPhi5yUiIiL6HrAQIioGTZo0QWZmJq5evSq2nTp1CgYGBvjll1/yLYSaNm36RWNSVVWFoaEhDA0NYWRkBAsLC/j6+qJ58+bw9vZGVlbWFz0/ERER0beMhRBRMTA1NUXFihVx4cIFse2vv/6Co6MjHB0dER8fj2fPngEAUlJScPv2bTg6OgIAMjIysGDBAjRr1gxSqRSurq6Ijo7Oc46tW7eiWbNmaNiwIX777Tc8evTok2Lt168fHj16hEuXLoltERERaNeuHSwtLdGuXTusX78eMtmHp0j36dMHHh4ecn3ExsbCzMwM9+7dAwAcO3YM3bp1g6WlJX7++WcsWbIEGRkZBcZw/PhxuLq6QiqVwtHRET4+PnKjaWZmZggPD4erqyssLCzQsWNHHDlyRK6P/zqnmZkZli1bhlatWsHR0RF37979pHwRERHRj4mFEFExsbe3x8WLF8X30dHRcHBwgKWlJXR0dMTi5vz589DS0kKjRo0AAJ6enjh58iT8/f2xY8cOtGvXDr/99huOHz8u1/+GDRuwdOlShIeHIzU1FSNGjIAgFP0J0jn3G8XHxwMAtmzZAj8/P4wcORJ79+6Fh4cH1qxZA39/fwBAt27dcOzYMbx+/VrsY/fu3bC2tkaNGjXw559/wsPDA66urtizZw+8vLywf/9+TJw4Md/zHzp0CMOGDUPLli0RGRkJb29v7Nu3D+PGjZPbz9/fH507d8auXbvQokULjBw5Uiw0FT3nxo0bsWzZMixfvhzGxsZFzhURERH9uFgIERWTnEJIEATEx8fj6dOncHBwgKqqKuzt7cXpcbGxsbCxsYGmpibu3buHPXv2wMfHB3Z2djA2Nkb//v3RoUMHBAcHy/W/YMECWFtbo0GDBpg/fz5u3LiB06dPFzlOHR0dAMCrV68AAIGBgRg2bBg6dOiAatWqwdnZGWPHjkVYWBjev38PZ2dnqKio4PDhwwA+jGAdOHAA3bp1AwCsWrUKrq6ucHNzQ/Xq1eHo6Ahvb2/88ccfePjwYZ7zBwUF4eeff8bw4cNhYmKCn376CV5eXjhy5Ahu3bol7tetWze4u7ujZs2amDBhAiwsLBAWFlakc3bu3BkWFhawsrIqcp6IiIjox6ZW0gEQ/Sjs7e3x4sUL3LlzB9HR0ahXrx709fUBAA4ODli+fDmAD/cHdejQAQAQFxcHAOjVq5dcX5mZmdDV1RXfa2trw9zcXHxvbGwMPT09JCYmFvleo5wCSFdXFykpKUhOTsaiRYuwdOlScR+ZTIb379/j4cOHMDU1Rdu2bREVFYUuXbrgxIkTyMjIQLt27cRruHLlCrZv3y4enzNSdfv2bVStWlXu/ImJieL157C1tRW31apVCwBgZ2cnt49UKsXJkyeLdM4aNWoUKTdERESkPFgIERWTihUrwsTEBBcvXsTJkyfFe4AAwNHRETNmzMD169cRHx+PefPmAfj3l/fw8HBoa2vL9aei8u+Araqqap7zyWQyaGhoFDnO69evAwDq1q0r3gfk6emZb0FVqVIlAB9GZ/r164dnz54hKioKrVu3RpkyZcQ4Bg0ahK5du+Y53tDQME9bftP5cuJQU/v3n6TcfwaA7OxsMSeKnlNLSyvPdiIiIiKAU+OIilXTpk1x4cIFXLx4EQ4ODmJ7lSpVYGxsjPDwcOjr64v36dSuXRsA8PTpU9SoUUN8RUZGyj13Jy0tDffv3xffJyQk4NWrV6hTp06RYwwPD0e1atUglUphYGAAfX19PHjwQO78169fx5IlS8RjbGxsUKVKFezatQvHjx8Xp8XlXENSUpLc8cnJyfDz80N6enqe85uZmcktKgF8GCUDPiw6kSP3CnwAcPHiRdSvX/+TzklERET0MRZCRMXI3t4e+/fvh0QigbW1tdy2Zs2aYf/+/bC3t4dEIgHw4Rf6Vq1awcvLC0ePHsWDBw+wZs0arF69GtWrVxePVVFRgYeHBy5duoRLly5h0qRJsLW1hY2NTYGxZGdn4+nTp3j69CkeP36MK1euYOrUqfjrr78wc+ZMSCQSSCQSDB48GBs2bEBYWBju37+PQ4cOYebMmdDS0hJHnCQSCbp06YIVK1ZAX18fTZo0Ec8zePBgHDhwAMuXL0dSUhJOnz4NT09PvHr1Kt8RoUGDBuHgwYMIDAxEUlISjh07htmzZ6NVq1ZyhdD69esRFRWFpKQkzJ8/HwkJCejXr98nnZOIiIjoY5waR1SM7Ozs8O7dO7Ro0QLq6upy2xwdHbFhwwa5kSIAWLx4MRYvXowZM2bg5cuXqF69OubOnSs37UtfXx+dO3fG8OHD8fbtW7Rq1QrTpk0rNJbk5GRxep6Kigr09PRga2uLTZs2wdLSUtxvwIAB0NTUxIYNG+Dr64vy5cvD1dUVo0ePluuva9euWL58Ofr06SM3ba9t27ZYvHgxVq9ejVWrVqFs2bJwcnLChAkT8o3L2dkZixYtwsqVKxEYGAh9fX24uLjkOZ+bmxtCQkKQmJgIc3NzBAcHi/dJFfWcRERERB+TCJ+y/i4R0RdkZmYGHx8fuSl4JeXVqc3ITnta0mEQERHlS1XXEDpN3ZCamo6sLFmx9aumpoJy5bSLvd8vTV9fG6qqik1649Q4IiIiIiJSOiyEiIiIiIhI6fAeISL65iQkJJR0CERERPSD44gQEREREREpHY4IEREVQkW7XEmHQEREVCD+nPp0LISIiAogCAK0GzqXdBhERESFEmQyyGRcCLqoWAgRERVAIpEgLe0tsrO/n2VDS4Kqqgp0dUsxVwpgrhTHXCmOuVLcj5ormUxgIfQJ+BwhIqJC/Eg/KL8kVVUV5kpBzJXimCvFMVeKY64U9z3mSkVFAolEotC+LISIiIiIiEjpcNU4IiIiIiJSOiyEiIiIiIhI6bAQIiIiIiIipcNCiIiIiIiIlA4LISIiIiIiUjoshIiIiIiISOmwECIiIiIiIqXDQoiIiIiIiJQOCyEiIiIiIlI6LISIiIiIiEjpsBAiIiIiIiKlw0KIiIiIiIiUDgshIiIiIiJSOiyEiIg+IpPJsGzZMjRr1gxWVlYYPHgwHjx4UNJhlajVq1ejT58+cm03btxA7969YWVlBScnJ4SGhsptV6Y8vnjxAjNmzEDz5s1hbW2Nnj174ty5c+L206dPo1u3bmjYsCHatm2LvXv3yh3//v17eHt7w97eHlKpFOPHj0dKSsrXvoyv4vnz55g4cSKaNGkCqVSKIUOG4Pbt2+J2fq/yl5SUBKlUisjISLGNufrX48ePYWZmlueVky/mSt7OnTvRvn17WFhYoEOHDti/f7+47eHDhxg6dCisra3h6OiIJUuWIDs7W+748PBw/PTTT7C0tESvXr0QFxf3tS+heAhERCQnICBAsLOzE44dOybcuHFDGDBggNCmTRvh/fv3JR1aiQgLCxPMzc2F3r17i20pKSmCnZ2d4OnpKdy6dUvYvn27YGFhIWzfvl3cR5ny2L9/f8HFxUWIjY0V7ty5I3h7ewuWlpbC7du3hVu3bgkWFhbCokWLhFu3bglr164V6tWrJ5w6dUo8fsqUKULr1q2F2NhY4fLly0KXLl0Ed3f3EryiL+fXX38VevToIVy+fFm4deuWMGrUKMHR0VF48+YNv1cFyMjIELp16ybUqVNHiIiIEASBfwc/dvz4ccHCwkJ4/Pix8OTJE/H19u1b5uojO3fuFOrVqyeEhYUJ9+7dEwIDAwVzc3PhwoULQkZGhtCmTRthyJAhQkJCgnDo0CHB1tZWWLp0qXh8ZGSkYGlpKezatUu4efOmMHHiRMHW1lZ4/vx5CV7Vp2EhRESUy/v37wWpVCqEh4eLbS9fvhQsLS2FqKioEozs60tOThaGDh0qWFlZCW3btpUrhFatWiU4OjoKmZmZYtvChQuFNm3aCIKgXHm8e/euUKdOHeHcuXNim0wmE1q3bi0sWbJEmD59utC9e3e5Y8aNGycMGDBAEIQPeTY3NxeOHz8ubr9z545Qp04d4cKFC1/nIr6SFy9eCOPGjRMSEhLEths3bgh16tQRLl++zO9VARYuXCj07dtXrhBiruQFBQUJHTt2zHcbc/UvmUwmtGrVSvD19ZVrHzBggLBq1SohKipKaNCggfDixQtx2+bNmwVra2uxKGzTpo3g5+cnbs/MzBRatGghrFq16utcRDHi1Dgiolzi4+ORnp4Oe3t7sU1XVxf16tVDbGxsCUb29V2/fh3q6urYvXs3GjZsKLft3LlzsLW1hZqamtjWpEkT3L17F8+ePVOqPJYrVw5BQUGwsLAQ2yQSCSQSCdLS0nDu3Dm5PAAfcnX+/HkIgoDz58+LbTlMTExQsWLFHy5Xenp6WLhwIerUqQMASElJQUhICIyMjFCrVi1+r/IRGxuLLVu2wNfXV66duZKXkJAAU1PTfLcxV/9KSkrCo0eP0LFjR7n24OBgDB06FOfOnUP9+vWhp6cnbmvSpAlev36NGzdu4Pnz57h7965crtTU1GBjY/Nd5oqFEBFRLsnJyQCASpUqybVXqFBB3KYsnJycEBAQgGrVquXZlpycDCMjI7m2ChUqAAD++ecfpcqjrq4uWrRoAQ0NDbHtwIEDuHfvHpo1a1Zgrt6+fYvU1FQ8fvwY5cqVg6amZp59frRc5TZ9+nTY29tj7969mDt3LkqXLs3v1UfS0tIwadIkTJs2Lc81M1fyEhMTkZKSAnd3dzRt2hQ9e/bEn3/+CYC5yi0pKQkA8ObNGwwcOBD29vbo0aMHjh49CkD5csVCiIgol7dv3wKA3C+1AKCpqYn379+XREjfpHfv3uWbI+DDjf/KnMcLFy7A09MTbdq0QcuWLfPNVc77jIwMvH37Ns924MfPVb9+/RAREQEXFxeMGDEC169f5/fqIzNnzoRUKs3zv/cA/w7mlpWVhTt37uDly5cYNWoUgoKCYGVlhSFDhuD06dPMVS6vX78GAEyePBkuLi5Yt24dHBwcMHz4cKXMldp/70JEpDy0tLQAfPgFNefPwIcfAKVKlSqpsL45WlpayMjIkGvL+SFYunRppc3j4cOHMWHCBFhbW8Pf3x/Ah18QPs5VzvtSpUrlm0vgx89VrVq1AABz587F5cuXERYWxu9VLjt37sS5c+cQFRWV73bm6l9qamo4e/YsVFVVxWtt0KABbt68ieDgYOYqF3V1dQDAwIED0bVrVwBA3bp1ERcXh//7v/8rUq4+3ud7zBVHhIiIcskZ7n/y5Ilc+5MnT1CxYsWSCOmbZGRklG+OAKBixYpKmcewsDCMGjUKrVq1wqpVq8T/Ra1UqVK+eShdujR0dHRgZGSEFy9e5PnF4kfMVUpKCvbu3YusrCyxTUVFBbVq1cKTJ0/4vcolIiICz58/R8uWLSGVSiGVSgEAXl5eGDRoEHP1EW1tbbkiBgBq166Nx48fM1e55FxPzn16OWrVqoWHDx8qXa5YCBER5WJubo4yZcrg7NmzYltaWhri4uLQuHHjEozs29K4cWOcP39e7tkSZ86cgYmJCQwMDJQujxs3bsTs2bPh7u6ORYsWyU0bsbGxQUxMjNz+Z86cgbW1NVRUVNCoUSPIZDJx0QTgwzz+x48f/3C5evbsGcaNG4fTp0+LbZmZmYiLi4OpqSm/V7n4+/tj37592Llzp/gCgNGjR2Pu3LnMVS43b96EtbW13LUCwLVr11CrVi3mKpf69etDW1sbly9flmtPTExE9erV0bhxY8TFxYlT6IAPudLW1oa5uTkMDAxgYmIil6usrCycO3fu+8xVSS9bR0T0rVm0aJFga2srHD58WO55EhkZGSUdWomZPHmy3PLZz549Exo3bixMnjxZuHnzphARESFYWFgIkZGR4j7Kksc7d+4I9evXF0aMGCH3/JInT54IaWlpQmJiolC/fn1hwYIFwq1bt4Tg4OA8zxEaN26c4OTkJJw5c0Z8jlDufP9IBg0aJLRp00aIiYkREhIShHHjxgmNGzcWHj16xO/Vf8i9fDZz9a/s7Gzhl19+Edq3by/ExsYKt27dEubNmyc0aNBASEhIYK4+smLFCkEqlQpRUVFyzxE6c+aM8O7dO6F169bCwIEDhRs3bojPEQoICBCP37Jli2BpaSlERkaKzxGys7Pjc4SIiH4EWVlZgp+fn9CkSRPByspKGDx4sPDgwYOSDqtEfVwICYIgXL58WXB1dRUaNGggtGrVStiwYYPcdmXJ48qVK4U6derk+5o8ebIgCIJw4sQJwcXFRWjQoIHQtm1bYe/evXJ9pKenC1OnThVsbGwEGxsbYdy4cUJKSkpJXM4Xl5aWJnh5eQkODg6CpaWlMGDAACExMVHczu9VwXIXQoLAXOX29OlTYcqUKYKDg4NgYWEh/Prrr0JsbKy4nbmSt27dOsHJyUmoX7++0KlTJ+HQoUPitrt37wr9+/cXLCwsBEdHR2HJkiVCdna23PFr164VmjdvLlhaWgq9evUS4uLivvYlFAuJIAhCSY9KERERERERfU28R4iIiIiIiJQOCyEiIiIiIlI6LISIiIiIiEjpsBAiIiIiIiKlw0KIiIiIiIiUDgshIiIiIiJSOiyEiIiIiD4Rn0JC9P1iIURERET0CY4cOYLJkyeXdBhE9InUSjoAIiIiou9RSEhISYdARJ+BI0JERERERKR0WAgRERHRd0MQBISEhKBdu3awtLTEzz//jODgYPFenZMnT6JXr15o1KgR7OzsMH78ePzzzz/i8QEBATAzM8vTr5mZGQICAgAADx8+hJmZGfbv34/Ro0dDKpXC1tYW06ZNw5s3bwAAffr0QUxMDGJiYmBmZoazZ89+hasnouLEqXFERET03fDz88P69evRv39/ODg44OrVq/D390dWVhYqVqyIyZMnw8XFBUOHDkVqaiqWLVuGX3/9FTt27ICBgUGRzuXl5YVffvkFgYGBuHLlChYvXoxy5cph/Pjx8PLywsSJE8X9atWq9SUul4i+IBZCRERE9F1IS0tDaGgoevfuLRYhTZs2xdOnTxEbG4v4+Hg4Ojpi4cKF4jHW1tZo3749goODMWnSpCKdr0WLFuJiCPb29jh58iSOHz+O8ePHo1atWihTpgwAwMrKqngukIi+Kk6NIyIiou/CpUuXkJWVhTZt2si1T5s2DZ6ennj69ClcXFzktlWvXh1SqRQxMTFFPt/HBY6RkZE4NY6Ivn8shIiIiOi78OLFCwCAvr5+gdvKly+fZ1v58uXx6tWrIp+vVKlScu9VVFT43CCiHwgLISIiIvou6OrqAgBSUlLk2v/++28kJCQAAJ49e5bnuKdPn6JcuXIAAIlEAgDIzs4Wt6enp3+ReIno28ZCiIiIiL4LlpaWUFdXx7Fjx+Ta161bh2XLlsHQ0BB79uyR2/bgwQNcunQJ1tbWACDe15OcnCzuc/78+U+KR0WFv0YRfc+4WAIRERF9F/T19dG3b1+EhIRAQ0MDtra2uHz5MjZt2oRJkyZBR0cHnp6eGD9+PDp16oTU1FQsX74cenp66N+/P4APCyD4+PhgxowZGDhwIP755x+sWLEC2traRY5HV1cXFy9exOnTp1GvXj3o6ekV9yUT0RfEQoiIiIi+GxMnToSBgQE2b96MtWvXomrVqpg+fTrc3NwAANra2li9ejVGjBiBMmXKoFmzZhg3bhwMDQ0BACYmJpg/fz5WrlyJIUOGwNTUFLNnz8bs2bOLHIu7uzuuXbuGwYMHw8fHBx07dizWayWiL0si8K4/IiIiIiJSMpzcSkRERERESoeFEBERERERKR0WQkREREREpHRYCBERERERkdJhIUREREREREqHhRARERERESkdFkJERERERKR0WAgREREREZHSYSFERERERERKh4UQEREREREpHRZCRERERESkdFgIERERERGR0vl/K5puDAPztS0AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# We check for balancy for the label attribute, since this recommendation system \n",
    "# is similar classification model, therefore, it is a must to balance the label attribute\n",
    "sns.countplot( data[\"Suggested Job Role\"], palette=sns.color_palette(\"pastel\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Axes: >"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAIuCAYAAADdSy5dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTdklEQVR4nOzdd3zN1x/H8VdkisQIIREjZmILEiuU0FK79q7ZUqvUqFmr9qpNa1StVqniZ7XRpVW7dqSE2DFCCdnJ7480t65E0Ca5cb2fj4fHQ8495/v9fM/95uZzzznf79ciPj4+HhERERExC5lMHYCIiIiIpB4ldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImlsyZIldOrUKcU6d+/e5YMPPsDb2xsfHx/GjRtHeHj4C+/L6t8GKSIiIiLPtmbNGubMmUOlSpVSrNe/f3/Cw8NZuXIl9+/fZ+TIkTx69IipU6e+0P6U3ImIiIikgZCQED766CP279+Pu7t7inWPHj3KgQMH2L59O0WKFAFg/Pjx9OjRg0GDBpEnT57n3q+mZUVERETSwKlTp7C2tmbLli2UK1cuxbqHDh3C2dnZkNgB+Pj4YGFhweHDh19ovxq5ExEREUlBnTp1Unzd398/2XI/Pz/8/Pyeax8hISG4uroaldnY2JA9e3auX7/+fIH+TcmdiIiImJ1Z11aZOoQXEh4ejo2NTZJyW1tbIiMjX2hbSu7kpfWy/eK+rAbl7QzAqgMPTRzJq6GzTxZA/Z2e1OfpK7G/XyZPG5lLTXZ2dkRFRSUpj4yMxN7e/oW2pTV3IiIiIibm4uLCzZs3jcqioqK4d+8euXPnfqFtKbkTERERMTFvb29u3LhBcHCwoezAgQMAVKxY8YW2peROREREJJ3FxsZy69YtIiIiAChXrhwVKlRg4MCBHD9+nN9//50xY8bQrFmzF7oNCii5ExEREUl3169fx9fXl+3btwNgYWHB/PnzyZcvH2+//Tbvv/8+NWvWZOzYsS+8bV1QISIiIpLGpkyZYvRzvnz5OHv2rFFZzpw5mTt37n/el0buRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjVqYOQORVEnbrPhu6LqXexFbkLV/Q1OFkGEEn9vHjhgXcuhpElqxOVKrbmsoNOmFhYfHUNqf27WTvt59x7+ZVsjm7Uq1RV8rWaGxU51rQafzXzeb6hdPYZs5C2RqNqdm8F5ZW1oY6V/48xg9fzefGxTNY29pTwqcutVr1wTZzFkOd21eD8F//CZcCDpPJ0gr3kt7Ubt0PJ5cCqd8Z6cCU/R3x8AE/bJjP2UN7iIp4RO78RanVsg/upXwMde6H3mTP+jmcP/4bcbGx5CtWhtda9iVv4ZKp3xkmklbvwZn937Hvf59z5/pFbO0dKVTKh9pt+uOQLaehzvO8B/Jye+GROz8/P+bNm5cWsRh8+OGHdOrUKVW2deXKFTw8PNi/f3+qbO/funv3Lhs2bDD83KlTJz788MNU3ccPP/zAuXPnUnWbT253//79eHh4cOXKlVTfj7kLu3mf/w1ZR9TDSFOHkqFcPXecL2cOIGded1oOmE7pam/i/+Un7Nu28qltAg76s3nRSAqXrkLL92dS0LMSW5d+xKl9uwx17t68wtqpvbCysaV536lUfrMT+3euYdcX0wx1Qi4FsmZKb2zs7GnRfzq1W/flzIHv2DRviKHOvZtX+XxCN25fDaJe52E0e+9jAFaO68K9W9dSv0PSmCn7Oy4ulvUz+hJ45Ef82g6gRf/p2NlnZf3M/oRcCgQg4tEDVk3oxoWT+3mt5Xu06D+dbM5ufPFxD66eP5lm/ZKe0uo9OLVvF5vmD8OlUAla9J9OrVZ9uHj6IGsmv0tMVMLnzvO8B/Lyy5AjdyNHjiQ2NtbUYaSqadOmceXKFVq1agXAvHnzsLS0TLXtX716lV69erFq1SqKFi2aZtv18vJi7969ODk5pdo+zF18XDyBu4/z+yJ/4k0dTAb086bFuBT0pGmviQAUKVuduNgYft2yHO967bC2sUvS5oev5lPCpy6vdxz8d5tqhD/8i582LqRU1XoA7Nu2Ehu7LLQeOBtLK2uKlvfF2saOXaumUr1xN7LlcuXAzjVkzpKVlgNmGI0ubft0LHeuXySnqzsHdq0lOiqCbuNXkyN3PgAKl67KinFv8+OGBYZk72Vhyv4+9dsOrl84Q/cJa8idvxgABT0r8unINlw48Tt5ChTn2E/f8tfta3QevZz8xcsDULhMFcIf3OP7NTN5e8yKdOiltJVW78FvW5dRpJwvDbqONLTL6VKQlePe5s8/fqGET93neg/k5Zch19w5OjqSPXt2U4eRquLjjf+sZ8+eHUdHxzTbflpt18bGBmdn51RNTM3dnaAQfpm1g2JvlMFveBNTh5OhxERHEXzmMB6VahuVe/rUJSriIZfP/pGkzb1b1wi9EYxHRT+j8hLedbkbcpnQG5eAhGmvouV9jZI2T5+6xMfHEXRiHwCvtexDm8Fzjeok/j8mKgqA29cukCtvYUNiB2CRKRMFPStw7tgv/+Ho05+p+/vMQX8KeFYwJBUAVja29J6+mSoNOwMJ/W2XJashsUtUsEQlrvx5jPCH9//18WcEafUexMfFUah0FbxqNzeqkzOvO5AwsgrP9x7Iyy9NkrvNmzfTpEkTypYti5+fHwsXLjQaibt06RI9e/bEy8uLGjVqsGLFCl5//XU2bdoEJJ2WDQ4Opnfv3lSsWJHKlSszaNAg7ty5A0BUVBRTp07Fz8+P0qVL4+Pjw4ABAwgNDX3ueL///nsaN25M2bJladeuHV9++SUeHh6G15Obin6y7OjRo3Tu3NkQ4/Dhw7l7967heL755hsOHDhg2O6T07JHjhyhQ4cOlC1bllq1ajFu3DjCwsKM9rds2TL69euHl5cXlStXZuLEicTExHDlyhXq1KkDQOfOnZ86be7h4cHcuXOpXbs2vr6+XLx4kWvXrjFw4ECqVq1KqVKlqFmzJtOnTycuLi7Z7T45LZtSXIn27t3LW2+9RZkyZWjUqBEbN258paZ2HXJno+2a96jW53Ws7Kyf3eAVcu/mFWJjopOsXcuRJz8Ad25cTNLm9rULADi5PqXN9YtER0Xw1+3r5HQxXteYJWsObDM7cOd6MABZnXIbRiqiIsK5cHI/P26YT77i5clTMKHc3jE7YfduExsTbbStuzevEPkojPCwv/7NoZuEqfs7JPgszm5FOLBzDfMHNmRyFx+WjenApbNHDG3sHbMTFfEoSRKXmJzcu3X1RQ87Q0mr98AiUybqth+ER8VaRnUCD/8IgLNbYeD53gN5+aV6crdy5UpGjx5NmzZt2LJlCwMGDGDZsmVMmTIFgPDwcLp06UJcXBzr1q1j9uzZbNq0icuXLye7vfv379OhQweioqL4/PPPWbFiBZcuXeL9998HEqY7d+/ezZQpU9i1axdTpkzh999/Z9GiRc8V76FDh+jbty9169Zl8+bNNGrUiKlTp77QMR8/fpxOnTpRrFgxvvrqKz755BOOHTtG9+7diY2NZeTIkbz55puGKc0nBQQE0LVrV2rUqMGWLVuYMWMGp06dolu3bkYjZ5988gne3t5s2bKFoUOHsnr1arZt24arq6thPd+8efPo1q3bU2Ndu3Ytc+fOZf78+bi7u9O7d28ePHjAihUr2LlzJ926deOzzz5jz549z73dp8UFcObMGd59912qVq3Kt99+S+/evV+4f192dlkz4+Cc1dRhZEiR4QlfYGwzOxiV29rZAxAV/jBpm0eJbbIYldtktv97mw8NdWyeqANgY2dv2G+i+Ph4Zr/nx9qpvYmKCKdep6GG18rWaMLDv26zZckY7t68wqMH9ziwcw3njyeMRkVHhj//AZuYqfv70YN7nDnwHUd//IY67QbS6v1ZWNvYsW5qH8N6r9LVG2JhYcGmuUO4deU8EQ8fcPLX7Rz/eQvwcvV3ctLqPUjO3ZDL+K+bTZ6CHhQt5ws833sgL79UTe7i4+P59NNP6dixIx06dMDd3Z2mTZvSv39/1q1bx4MHD9i+fTuhoaHMnDkTT09PKlWqxPTp0586rbh9+3YePnzIrFmzKF26NCVLlmTixImUL1+eqKgoypQpw9SpU/Hx8cHNzQ0/Pz+qVatGYODznaRffPEFXl5eDBgwgMKFC9OhQweaNWv2Qse9fPlyPDw8GD16NEWKFKFKlSrMmjWLU6dOsXfvXhwdHbGzs8Pa2hpnZ+ck7ZctW0b16tXp1asX7u7uVKpUiZkzZ3Ls2DEOHDhgqOfr60vnzp3Jnz8/LVq0wNPTkyNHjmBpaWlYA5ctWzayZEn6AZuoadOmlClThvLlyxMREUHTpk2ZMGECnp6e5M+fny5dupArVy7Onj373Nt9WlyQkOyXLl2aoUOHUrhwYRo2bEjfvn1fqH/FfMXHpbycwMIi6UdUfHzcM9s8a5mCRSbj7cbFxtBq4GxaDZyNk0sBvvi4ByHBCZ8hhctUoWmviVw8tZ+FHzRh9nt+nPtjL9UadQHAKpn1URmVqfs7NiaaiEdhtBu6gBI+dSla3pc2H8zFxs7ecDGBs1thWg+aw92bV1g6vBUze73G/l1rqNmiN0Cy69FeJmn1Hjzp9rULrJ78LhaZrGjRb9oLvQfy8kvVCypCQ0O5ffs2FStWNCr38fEhOjqaoKAgTp8+TaFChYzW1Hl6ej51/VlgYCDu7u5ky5bNqL6npyeQkKz89ttvzJgxg4sXLxIUFMSFCxeoVKnSc8V87tw5fH19k8S7Zs2a52qfGGP16tWNyhKP6ezZs7z22msptj99+jTBwcF4eXklee38+fNUrlwZgCJFihi95ujoSHR0dJI2KSlY8J9pEzs7Ozp27MjOnTs5fvw4wcHBnD17ltu3bxMXl/KHyeNSiuv06dNUq1bN6HVvb+8XilnMl619wuhFZITxyEPiSMSToxuPt4kKf5R8G3sHwwhHsqMg4Q+xe2K7llbWFC5TBYACnhVYMLARB3avpXHPsQCUrt6AklXrce/mVaxs7MjqlJufNi7CwiITdllSb+1sWjN1f9va2ZMzbyGyOuX5Z/uZs5CvWDluBAcYygqXqUqfWdv46++rkbPnduOPnzYDkDnLP38LXkZp9R48LvjMIb7+ZDA2dvZ0HLHEMH0Lz/8eyMstVZO7p317S0wUrKyssLS0fKHEwcoq5RDHjBnDrl27aNasGX5+fvTp04dly5YREhLy3Pt4Mh4bG5tntnl8TdnTjjs+Ph5r62evsYqLi6Nx48b06tUryWuPX5WaXFwveiGFnd0/33ofPXpEx44diYiIoH79+rz11luULVuWDh06vNA2U4rrRd9vebXkyJ0Pi0yW3A0xXpYR+vfPudwKJWmT0zXhC8rdkMu4uHsayhO3kStvIWzs7HHMkTvJdh/+FUpUxENy5k3YbuCRn7Czd6CA5z9fSO3sHcmeJx9hd28BCfe4u3bhNGV9Gxmtk7px8Qy5CxQjU6aX5+IiU/d3DpcCxMZEJdlHbGwMVtYJn01/3b7OhZP7KePbkOy53Qx1blwMILNDNrI5533h485I0uo9SHRq3062LBlDrrzutBk8n6xOuY33/xzvgbz8UnVaNleuXOTKlYvDhw8blR86dAhra2sKFCiAp6cnwcHB3Lt3z/D6+fPnefDgQbLbLFq0KBcvXjR6/dSpU1StWpWrV6/y5Zdf8tFHHzF8+HCaN29OiRIlCAoKeu6kp2TJkhw9etSo7ORJ43spWVtbG13cEBYWZrigAxIuVHjymAMCAggLCzOMaqV0Y8pixYpx7tw5ChYsaPgXExPD5MmTuX79+nMdR0rbf5q9e/dy6tQpVq1aRf/+/WnQoAEODg7cuXPH0H//ZruP8/T05Pjx40ZlT/a3vLqsbGwp4OHF2UN7jH5nzx70x9begbyFSyVp45SnANmd3Thz8Huj8oCD/ji5FCD733/8C5Wpwp9//EJMdJRRHYtMlriXTBg9PrBzDTtWTiYu7p8Lvu6HhnD76gXD1YS3rgaxdckY7ly/aKhz62oQQSd+p3iFWv+5D9KTqfu7aLnqhAQHcvtqkKHOowf3uPLnHxTwSJi5eHj/Lv9bNp6Lpw8a6oTdu83p33dRzKvmf/5MMrW0fA/O/bGXbxePJl+xcnQevTxJYgfP9x7Iy+9fJXfBwcH8/PPPRv8S14Z1796d1atXs3btWoKDg9m6dSvz58+nTZs2ODo60qhRI3LkyMHgwYMJCAjgjz/+YMiQhBuGJvdL27hxY7Jly8aQIUMICAjg5MmTfPTRRxQvXpzcuXPj6OiIv7+/YUpx9OjRnDp1iqiopN9MktO9e3fOnj3LlClTCAoKYtu2baxcudKoTvny5dm+fTtHjhzh3LlzjBgxwuhWIF27duXs2bNMmDCB8+fPs3//fgYPHkzJkiWpWrUqAPb29ty8eTPZC0e6devG6dOnGTduHOfPn+fo0aN88MEHXLx4EXd39+c6Dnv7hIW1gYGBT02Un+Ti4gLAli1buHr1KocOHeK9994jOjra0H//ZruP69atGydOnGDGjBlcuHCB7777jrlz5wL/PXEU8+DbNOHmtJvmDePcsV/58euF7Nu+iuqNu2Ftm5nI8DCunjvOw/t3/2nTrCdn9n/HjpWTOX/8V3asmMSZ/d/x2t/rsgCqNnybR/fvsn56X/48+jP7d6zmu7Uz8ardnGy5XA3buXM9mG/mf0jQiX2c/HU7a6f0xi6LI5UbJFyxX7RcdXLkzsfmhSM498deTu3bxbppfcju7EblN19slDsjMGV/e9drj6NTbr6cOYBT+3YSeOQn1s/ohwUWVPm7v10LlSBf8fLsXDmZgIP+nD38I2un9CZTJktqNk86u/EySov3ICYqkv8tG4+tnT3Vm3Tn9tUgrp47bvh3PzRhNut53gN5+f2radmtW7eydetWozI3Nzf27NlDt27dsLGx4fPPP2fSpEm4uLjQs2dPunfvDiRM4X322WeMHz+e1q1bky1bNnr16sWpU6eSncLMnDkzy5YtY/LkybRt2xY7Oztq1arFsGHDsLa25pNPPmHKlCmGJDDxVilLliwhPPzZV1V5enoaruZdvXo1xYsXp2XLlnz++eeGOoMGDeLevXt07doVR0dHunXrxv37/1ymX65cOT777DPmzJlDs2bNcHBwoG7dunzwwQeGY2rWrBnfffcdjRo1Yvfu3UYxlC9fns8++4xPPvmEt956C3t7e6pWrcqwYcOea4oYIEeOHLRo0YJp06YRHBzMqFGjntmmbNmyDB8+nJUrVzJnzhzy5MlDgwYNcHV15cSJE8lu9/XXX3+ueBIVL16c+fPnM2vWLFauXEmhQoXo2LEj8+bNe64pazF/7qV8aNF/Or9sWszXcwbhmCM3ddq+b/hDc+NiAKsnvUOjnmMpVzPhPoHlajYhNiaK37d/wbGfvyWHsxtN3h1PySr1DNvNlbcQ7YYtwH/dHDbOG4q9Q3Yq1+tAzRb/JAjuJb1pP2whP29cxMa5Q8lkaUmRstXwe+xxTda2mWk7dD7frZ7B5kUjsLK2pUjZatRq3TfZ9VEZnSn7O3OWrLw9ZgV71s9l5+dTiI2JJn/x8jQevZysORO+bFpYWNCi/3S+XzOT7cs/BuIpWKISLVrNMCSJL7u0eA+u/HmMsHu3AVg37b0k+6zx1jvUbN7rud4DeflZxKfV3W+f4sqVK1y8eNHoIoaQkBBq1qzJmjVrnvtCiLS0adMmhg8fztmzZ00dykvv+PHjWFlZUbLkP8+E3Lp1KyNGjODo0aPPXFOZklnXVqVGiPIMg/Im3Nh01YHkb7cgqauzT8LFCerv9KM+T1+J/Z3WUvNvROLn4Msi3Z9QERkZyTvvvMOyZcu4fPkyp0+fZvTo0bi7u1OuXLn0DkfS2JkzZ+jcuTP+/v5cu3aNffv2MW/ePBo2bPifEjsRERFJXrr/dS1SpAizZs1i8eLFzJ07Fzs7O6pWrcqKFSs0TWeGWrduza1bt5g0aRIhISHkzJmThg0b0r9/f1OHJiIiYpZMMnRSv3596tevb4pdP5fmzZvTvHnzZ1eUZ7KwsKBv3766cbGIiEg6SfdpWRERERFJO0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERNJAXFwcc+fOpUaNGpQvX56ePXty+fLlp9a/c+cOH3zwAVWqVKFy5coMHDiQkJCQF96vkjsRERGRNLBw4ULWrl3LhAkTWL9+PXFxcfTo0YOoqKhk67///vtcu3aNFStWsGLFCq5du0afPn1eeL9K7kRERERSWVRUFMuXL6d///7UqlULT09PZs+ezY0bN9i9e3eS+vfv3+fAgQP07NmTEiVKULJkSd555x1OnDjBvXv3XmjfSu5EREREUllAQAAPHz6katWqhrKsWbNSsmRJDh48mKS+nZ0dWbJkYfPmzYSFhREWFsa3335LoUKFyJo16wvt2+o/Ry8iIiJixurUqZPi6/7+/knKbty4AYCrq6tRee7cuQ2vPc7GxoYpU6YwZswYKlWqhIWFBblz52b16tVkyvRiY3EauRMRERFJZeHh4UBC0vY4W1tbIiMjk9SPj4/nzJkzeHl5sWbNGj7//HPy5s3Le++9R1hY2AvtWyN3IiIiIilIbmTuWezs7ICEtXeJ/weIjIwkc+bMServ2LGD1atX88MPP+Dg4ADA4sWLqV27Nl9//TVdunR57n1r5E5EREQklSVOx968edOo/ObNm+TJkydJ/UOHDlGoUCFDYgeQLVs2ChUqRHBw8AvtWyN3IiIiYnYGHX2xhChFeV+8iaenJw4ODuzfv58CBQoACVfEnj59mo4dOyap7+Liwv/+9z8iIyOxtbUF4NGjR1y5coUmTZq80L41ciciIiKSymxsbOjYsSMzZszA39+fgIAABg4ciIuLC2+88QaxsbHcunWLiIgIAJo1awYk3OsuICCAgIAABg0ahK2tLc2bN3+hfSu5ExEREUkD/fv3p2XLlowaNYp27dphaWnJsmXLsLa25vr16/j6+rJ9+3Yg4SratWvXEh8fz9tvv03Xrl2xtrZm7dq1ODo6vtB+NS0rIiIikgYsLS0ZMmQIQ4YMSfJavnz5OHv2rFFZkSJFWLx48X/er0buRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIxYxMfHx5s6CBEREZFU9b8JqbethqNTb1vpQCN3IiIiImbEytQBiPxbqw48NHUIr4TOPlkAmHVtlYkjeTUMytsZ0PmdnhLPcfV5+kjsb0k7GrkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJWpAzAnHh4eTJ48mebNm6fJ9jdt2sTw4cM5e/bsv97G4cOHiY+Pp1KlSly5coU6deqwatUqKleunIqRvtyCTuzjxw0LuHU1iCxZnahUtzWVG3TCwsLiqW1O7dvJ3m8/497Nq2RzdqVao66UrdHYqM61oNP4r5vN9Qunsc2chbI1GlOzeS8srawNda78eYwfvprPjYtnsLa1p4RPXWq16oNt5iyGOrevBuG//hMuBRwmk6UV7iW9qd26H04uBVK/M15yYbfus6HrUupNbEXe8gVNHU6GYcpz/PrFM/y0YSHXL5wiPj4eF/cS1G7TD1f3EoY690ND8F83h4un9hMTHY17KR/qtB3w0p7jGf0zJSY6il++WcLJ33bw6P5dnFwKUL1pd0pWfiP1O0PShUbuXjHt27fn0qVLpg4jw7p67jhfzhxAzrzutBwwndLV3sT/y0/Yt23lU9sEHPRn86KRFC5dhZbvz6SgZyW2Lv2IU/t2GercvXmFtVN7YWVjS/O+U6n8Zif271zDri+mGeqEXApkzZTe2NjZ06L/dGq37suZA9+xad4QQ517N6/y+YRu3L4aRL3Ow2j23scArBzXhXu3rqV+h7zEwm7e539D1hH1MNLUoWQopjzHQ0MusfrjnkRHRdCwx0c06jmW2OgoVk3ozp3rFwGIighn7ZTehFw6S/0uI2jaeyIP7t5k1cQehIf9lVbdkmYy+mcKwLeLRnH4+w1Ua9SV1oPmkKegB98sGM7547+men9I+tDInchjft60GJeCnjTtNRGAImWrExcbw69bluNdrx3WNnZJ2vzw1XxK+NTl9Y6D/25TjfCHf/HTxoWUqloPgH3bVmJjl4XWA2djaWVN0fK+WNvYsWvVVKo37ka2XK4c2LmGzFmy0nLADKNv3ts+Hcud6xfJ6erOgV1riY6KoNv41eTInQ+AwqWrsmLc2/y4YYEh2XuVxcfFE7j7OL8v8ife1MFkQKY8xw/uWo+1jR1tPpiLjV1mANxL+rBgUEMO7l5P/bc/JODg99y5fpF3Jm/AOV8RAHLnL8aCQY04c+A7Kvi1TI9uSjUZ/TPl0tkjBBz8njaD51G0XHUA3Ev5cDfkMueP/UaRstXTuoskDWjkLpVduHCBLl26UKZMGWrUqMGSJUsMr8XFxbFkyRLq1atH6dKlqVChAj169DAaSXv48CETJkzA19cXLy8vOnbsyMmTJ5Pd186dOyldujTr168H4K+//mLUqFHUqFGDUqVKUbVqVUaNGkV4eDiQMG0MMHz4cD788EPDdo4dO0arVq0oXbo0derUYePGjUb72bx5M02aNKFs2bL4+fmxcOFCYmNjAbhy5QoeHh7s2rXLsA0/Pz++/PJLQ/s7d+7Qv39/KleuTNmyZWnbti0HDhz4L92cJmKiowg+cxiPSrWNyj196hIV8ZDLZ/9I0uberWuE3gjGo6KfUXkJ77rcDblM6I2E9zboxD6Klvc1+oD19KlLfHwcQSf2AfBayz60GTzXqE7i/2OiogC4fe0CufIWNiR2ABaZMlHQswLnjv3yH47efNwJCuGXWTso9kYZ/IY3MXU4GYqpz/FceQtRuUEnQ2IHYGOXGUenPNy9eQWA4hVr8fboFYbEDh77PYiO+g9Hn/5M3d/P85kScMCfHLnzGRI7AAsLC94es4I3OhmP8MnLQ8ldKlu9ejXNmjVj+/bttGvXjlmzZrFvX8Iv2qpVq1i2bBkffvghu3btYsGCBVy8eJEpU6YY2r///vv8/PPPTJ48mc2bN5M/f366devGX38ZT0d8//33DBkyhI8++oi2bdsC8OGHH3L69Gnmz5/Prl27GD58OJs3bzYkWnv37gVgxIgRjBw50rCtzz//nN69e7N9+3Zq1KjBqFGjCA4OBmDlypWMHj2aNm3asGXLFgYMGMCyZcuMYgaYPHkyvXr1YseOHdSqVYuxY8dy+fJlAMaOHUtkZCSrV69m69atFCpUiPfee49Hjx6lZtf/Z/duXiE2JjrJup4cefIDcOfGxSRtbl+7AICT61PaXL9IdFQEf92+Tk4X4zVfWbLmwDazA3euJ/R1Vqfc5ClQHEiYmrpwcj8/bphPvuLlyVMwodzeMTth924TGxNttK27N68Q+SjspZy2Sm0OubPRds17VOvzOlZ21s9u8Aox9TlesW4rqjZ826hOaMglbl05j7NbQjJnZ+9IvuLlAIiNiSbkUiBbl4zB3jE7JSq//m8O22RM3d/P85kSEnwW53xFOfnbDhYPa86kt71ZPKw5Zw/98B+PXkxJ07KprH379jRr1gyA9957j+XLl3Py5EmqVq1KgQIFmDp1KrVrJ3yLc3Nzo379+uzcuROAoKAgfv75Z5YtW4avry+QkBhlzZqVu3fvGvbx448/MmjQIMaNG2d08Ub16tXx9vY2jNDly5eP1atXExgYCICzszMAjo6OODo6GhLGPn364OeX8C1x4MCBrFu3jlOnTlGgQAE+/fRTOnbsSIcOHQBwd3fn3r17TJ8+nf79+xv23aVLF+rUqWPYxpo1azh27Bj58+fn0qVLFC9enPz582NnZ8fIkSNp3LgxlpaWqdjz/11keBgAtpkdjMpt7ewBiAp/mLTNo8Q2WYzKbTLb/73Nh4Y6Nk/UAbCxszfsN1F8fDyz3/MjJjqSzA7ZqddpqOG1sjWacGrfTrYsGfP3omgHTv76P84fT/gCER0ZTmaHbM9/0GbILmtmIPMz672KMso5nig6KoKtSz7CytoG7zfaJHn9q1kDCDrxOxYWmWjYYwyO2Z1TPL6MJqP0d0qfKY8e3CU05BLXL56hVqs+OGTLxWH/DXw9dzBtB8/VtOxLSsldKnN3dzf6OWvWrERGJizo9vPz49ixY3zyySdcuHCBCxcucO7cOfLkyQNgSMLKly9vaG9ra8vw4cMBOHLkCAADBgwgKiqKfPny8bj27duzZ88evvnmGy5evMi5c+e4cuUKhQsXTjHmQoUKGf6fLVtCYhAZGUloaCi3b9+mYsWKRvV9fHyIjo4mKCiInDlzAlCkyD9TKI6OjgBERyeMLvXt25chQ4awa9cuKlasiK+vL40aNcLW1jbFuNJbfFzKK7QsLJIOdMfHxz2zTXz8M7abyXi7cbExtBo4m5joSH7buoIvPu5B51HLyVOwOIXLVKFpr4l8t2YGC39PWFxdqFRlqjXqws+bFmOVzPodkUQZ5RyHhCTl6zmDuBZ0iub9ppEtV94kdXyb9qRKw7c5+dsOtn06lvi4OMrXapbivjKSjNLfKX2mxMZEE3bvNt0mrDFcsexeypvPRrTll28+VXL3ktK0bCpLbjQq8Rdx6dKldO7cmbt371K1alXGjRtHt27dDPWsrJ4v1544cSJvvPEGI0eONKyni4uL491332XixIlYWVnRoEEDlixZQoUKFZ65vUzJfPDGx8c/9QMkLi4uSbw2NjbJbgPg9ddf55dffmHKlCm4ubmxYsUK6tevz59//vnsg01HtvYJ364jI4y/TUf+/e36yW/fj7eJCn+UfBt7B8M38GS/pYc/xO6J7VpaWVO4TBWKV3iNtkPmkSmTJQd2rzW8Xrp6AwbM/47e0zfT75OdtP9wEXFxsVhYZMIui+MLHbO8WjLKOX7/zg1WTejG5T+P8VafyXhUrJVsvPk9vChUqjKNe46lYIlK/Lpl2bMOMUPJKP2d0meKTeYsOGTPZXQrmkyZLHEv7UNI8L+/7ZaYlpK7dLR48WL69OnD2LFjadOmDeXLl+fixYuGJChx9OvEiROGNjExMfj5+RmmbgEaN27M6NGjuXfvHrNmzQLgzJkz/Pzzz3zyyScMHjyYJk2aUKBAAS5duvTMb3lPkytXLnLlysXhw4eNyg8dOoS1tTUFCjz7nlNRUVFMnjyZy5cv06BBAyZOnMj3339PpkyZ+PHHH/9VXGklR+58WGSy5G7IZaPy0L9/zuVWKEmbnK4Ja16ebJP4c668hbCxs8cxR+4kdR7+FUpUxENy5k3YbuCRn7gUYNzXdvaOZM+Tj7C7t4CEe9wd37uNTJkscXIpQFan3ADcuHiG3AWKkSlTxprqlozF1Oc4wM3Lf7JibGfu37lB+6EL8PSuY9TmWtApTu/fnSQOF/cSPLh363kPNUMwdX8/z2eKU54CxMbEJPk7ERcTg5VNxppdkeen5C4dubq68uuvv3Lu3DmCgoKYPXs2u3fvJurvq5YKFSrEG2+8wbhx4/j999+5cOECo0ePJjIyEh8fH6NtOTs7M2TIEFavXs3hw4fJlSsXVlZW7Nixg8uXL3PixAnef/99bt26Zdg+gL29PefPnzdaw5eS7t27s3r1atauXUtwcDBbt25l/vz5tGnTxjD9mhIbGxtOnDjB6NGj+eOPP7hy5QqbNm3i0aNHeHl5vUDvpT0rG1sKeHhx9tAeow+6swf9sbV3IG/hUknaOOUpQHZnN84c/N6oPOCgP04uBcjunDDVVKhMFf784xejq/0CDvpjkckS95LeABzYuYYdKycTFxdrqHM/NITbVy+QO38xAG5dDWLrkjGGe4IllgWd+J3iFWr95z4Q82bqc/z+nRusndIbLCzoPGYFBTyNl3wAnD/2K98uGsX9OzcMZXFxsVw8fdDwe/CyMHV/P89nSpFy1QkPu8eFk78b6sTGRHP+xD7ye2Ssz+iXUVxcHHPnzqVGjRqUL1+enj17Gi42TE50dDQzZ8401O/YsSNnzpx54f0quUtH06ZNIyIighYtWtCxY0cCAwMZN24cd+7c4dq1hBvQTpo0CW9vbwYMGEDz5s25fv06y5Ytw8nJKcn2WrVqRcWKFRkxYgTZsmVjypQp7NmzhwYNGjBgwADy5MlDly5djG6l0q1bN1avXm1Yx/cs3bp1Y9iwYXz++ec0bNiQTz75hJ49ezJixIjnPu7Zs2eTP39+evfuTf369Vm/fj0zZsygUqVKz72N9OLbtAdXz59k07xhnDv2Kz9+vZB921dRvXE3rG0zExkextVzx3l4/5/k2LdZT87s/44dKydz/viv7FgxiTP7v+O1Fr0Ndao2fJtH9++yfnpf/jz6M/t3rOa7tTPxqt2cbLlcDdu5cz2Yb+Z/SNCJfZz8dTtrp/TGLosjlRt0AqBouerkyJ2PzQtHcO6PvZzat4t10/qQ3dmNym92SN/OkpeSKc/xXV9M5+H9UGo060nU3/tJ/HfrahAAXn4tsHfMzpczBxBw0J8/j/7MVzPf59aVc/i16c/LJqN/ppSu9iYu7p58u2gkR3/8hvPHf+Wr2QN5EBpCjbfeSd/OMkMLFy5k7dq1TJgwgfXr1xMXF0ePHj2MBl0eN3bsWDZt2sSkSZPYuHEjTk5O9OzZkwcPHrzQfi3i/+2cnYiJrTqQdL1Jagg4tIdfNi3mzvVgHHPkpmLd1lT5+4Mw+MwhVk96h0Y9x1Ku5j/3UDuy52t+3/4F90NDyOHsRrXGXSnj28hou5fOHsF/3RxCLgVi75CdMtUbUrOF8aOCLp4+yM8bFxFy6U8yWVpSpGw1/Nr0J2tOF0Od0JBLfLd6BpcD/8DK2pYiZatRq3XfNLuSsLNPwvqeWddWpcn209K1P4LZOnA1jWd3fGkePzYob2cg7c5vMM05HhsTzbQeCTfwTU4Bz4p0GvkpkHBrnz3r53Ip4DBRkeG4FSnNay16p9lIUuI5/qp+poQ/vM+PX83n7KE9REY8wsXdk9qt+1LA49lrtv+NxP5Oc/+bkHrbajj6hZtERUVRpUoVBg8eTPv27QG4f/8+NWrU4OOPP6ZRI+P38/Lly7z++ussXryYWrVqGeo3a9aMjz/+mKpVqz73vpXcyUsrLf/4yT9e5uTuZZQeyZ0YS+vkToy9jMldnVk/pvi6v79/krLjx4/TqlUrdu7caXRXinbt2lG8eHHGjRtnVH/9+vXMnDmT/fv3J3uh44vQtKyIiIhIKrtxI2HdqKurq1F57ty5Da897sKFC+TPn5/du3fTvHlzqlevTs+ePTl//vwL71v3uRMRERFJQXIjc8+SeKuyJ28VZmtrm+SpUwBhYWEEBwezcOFChg4dStasWVm0aBHt27dn+/bthvvKPg+N3ImIiIikMju7hJvKP3nxRGRkJJkzJ32KjpWVFWFhYcyePRtfX1/Kli3L7NmzAfjmm29eaN9K7kRERERSWeJ07M2bN43Kb968aXgy1eNcXFywsrIyeuKTnZ0d+fPn58qVKy+0byV3IiIiIqnM09MTBwcH9u/fbyi7f/8+p0+fxtvbO0l9b29vYmJijB5kEBERweXLlylY8MWu9teaOxEREZFUZmNjQ8eOHZkxYwZOTk64ubkxffp0XFxceOONN4iNjSU0NBRHR0fs7OyoVKkS1apVY9iwYYwfP57s2bMzd+5cLC0tadq06QvtWyN3IiIiImmgf//+tGzZklGjRtGuXTssLS1ZtmwZ1tbWXL9+HV9fX7Zv326oP2/ePHx8fOjbty8tW7YkLCyMVatWJfsgg5Ro5E5EREQkDVhaWjJkyBCGDBmS5LV8+fJx9uxZozIHBwfGjh3L2LFj/9N+NXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmxCI+Pj7e1EGIiIiIpKr/TUi9bTUcnXrbSgcauRMRERExI1amDkDk31p14KGpQ3gldPbJAqi/00tif8+6tsrEkbw6BuXtDOgcTy+J57ikHY3ciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIikgbi4uKYO3cuNWrUoHz58vTs2ZPLly8/V9stW7bg4eHBlStXXni/Su5ERERE0sDChQtZu3YtEyZMYP369cTFxdGjRw+ioqJSbHf16lXGjx//r/er5E5EREQklUVFRbF8+XL69+9PrVq18PT0ZPbs2dy4cYPdu3c/tV1cXBxDhgyhVKlS/3rfVv+6pYiIiMgroE6dOim+7u/vn6QsICCAhw8fUrVqVUNZ1qxZKVmyJAcPHqRRo0bJbmvx4sVER0fTt29ffv/9938Vr5I7ERERkVR248YNAFxdXY3Kc+fObXjtScePH2f58uV8/fXXhISE/Ot9K7kTERERSUFyI3PPEh4eDoCNjY1Rua2tLX/99VeS+o8ePWLw4MEMHjwYd3f3/5Tcac2diIiISCqzs7MDSHLxRGRkJJkzZ05Sf+LEiRQqVIi2bdv+531r5E5EREQklSVOx968eZMCBQoYym/evImHh0eS+hs3bsTGxgYvLy8AYmNjAWjUqBG9evWiV69ez71vJXciIiJidlY5D0q1bXX+F208PT1xcHBg//79huTu/v37nD59mo4dOyap/+QVtMeOHWPIkCEsXbqU4sWLv9C+ldyJiIiIpDIbGxs6duzIjBkzcHJyws3NjenTp+Pi4sIbb7xBbGwsoaGhODo6YmdnR8GCBY3aJ150kTdvXrJnz/5C+1ZyJ/KEoBP7+HHDAm5dDSJLVicq1W1N5QadsLCweGqbU/t2svfbz7h38yrZnF2p1qgrZWs0NqpzLeg0/utmc/3CaWwzZ6FsjcbUbN4LSytrQ52Ihw/4YcN8zh7aQ1TEI3LnL0qtln1wL+VjqHM/9CZ71s/h/PHfiIuNJV+xMrzWsi95C5dM/c5IJ6bs8+sXz/DThoVcv3CK+Ph4XNxLULtNP1zdSxjq3A8NwX/dHC6e2k9MdDTupXyo03YATi4FEGNht+6zoetS6k1sRd7yBZ/d4BUWFfGIPes/IeDv3/cCHhV4veMH5HR1T7Fd2F93+H7NLIJOJHwGFClXnbodBuGY3TnZ+gd3r2f/ji/oO/t/T91mXGwMK8d3xdrGjk4jP/0vhyWP6d+/PzExMYwaNYqIiAi8vb1ZtmwZ1tbWXLlyhTp16jB58mSaN2+eqvt9JS6o8PPzY968eQBs2rQp2bnu9OTh4cGmTZuSfe3J+B6vO2/ePPz8/NIlxsf98MMPnDt3DoD9+/f/68ehvAyunjvOlzMHkDOvOy0HTKd0tTfx//IT9m1b+dQ2AQf92bxoJIVLV6Hl+zMp6FmJrUs/4tS+XYY6d29eYe3UXljZ2NK871Qqv9mJ/TvXsOuLaYY6cXGxrJ/Rl8AjP+LXdgAt+k/Hzj4r62f2J+RSIAARjx6wakI3Lpzcz2st36NF/+lkc3bji497cPX8yTTrl7Rkyj4PDbnE6o97Eh0VQcMeH9Go51hio6NYNaE7d65fBCAqIpy1U3oTcuks9buMoGnviTy4e5NVE3sQHpb0irdXWdjN+/xvyDqiHkaaOpSXwuaFIzhz4Htqt+5Hk3fH8+DuTVZPeofwh/ef2iYuNob10/tx7fwJ3uwygvpdhnPlz2Osm9qH2JjoJPVP7dvF92tnPTOW37au5HrQqf90PJKUpaUlQ4YMYd++fRw9epSlS5eSL18+APLly8fZs2efmthVrlyZs2fPGuq/iFdu5K5BgwbUqFHD1GE8VUaL7+rVq/Tq1YtVq1ZRtGhRvLy82Lt3L05OTqYOLU38vGkxLgU9adprIgBFylYnLjaGX7csx7teO6xt7JK0+eGr+ZTwqcvrHQf/3aYa4Q//4qeNCylVtR4A+7atxMYuC60HzsbSypqi5X2xtrFj16qpVG/cjWy5XDn12w6uXzhD9wlryJ2/GAAFPSvy6cg2XDjxO3kKFOfYT9/y1+1rdB69nPzFywNQuEwVwh/c4/s1M3l7zIp06KXUZco+P7hrPdY2drT5YC42dglXr7mX9GHBoIYc3L2e+m9/SMDB77lz/SLvTN6Ac74iAOTOX4wFgxpx5sB3VPBrmR7dlKHFx8UTuPs4vy/yJ97Uwbwkrvx5jD+P/kybwfMoWq46APk9KrBgUCMOf/8Vvk17JNvuzIHvCQkO4J0pX+PsVhiAPAU9WDq8FWf2f0fp6g0AePhXKD9tXMjRHzaR2SFbirGEBAfy69blZMmWKxWPUEzplRi5e5ydnR3OzskPXWcEGS2++Hjjj2obGxucnZ2xtLQ0UURpJyY6iuAzh/GoVNuo3NOnLlERD7l89o8kbe7dukbojWA8KhqPqJbwrsvdkMuE3rgEJEw7Fi3vazQd6OlTl/j4OIJO7APgzEF/CnhWMCR2AFY2tvSevpkqDROW896+dgG7LFkNiV2igiUqceXPYyl+48+ITN3nufIWonKDTobEDsDGLjOOTnm4ezNhdLp4xVq8PXqFIbEDDNuMiU75+ZCvijtBIfwyawfF3iiD3/Ampg7npRB0Yh/WtpkpXKaKoSxL1hwU8KzI+WO/Pr3d8X3kdHU3JHYAzm6FyZW3EOcea/fr1mUEndhHi/7TKVa+5lO3FxsTzZYlo/F+oy05XTWNbi4yXHL38OFDJkyYgK+vL15eXnTs2JGTJ/+Zbjp69CidO3emYsWKVK5cmeHDh3P37l3D6w8ePGDYsGFUqlSJKlWqsGKF8UhGctOeX3/9NV26dKFs2bL4+voyf/58ozZbt27lzTffpEyZMrRq1YpVq1alOLV78eJFunfvTsWKFfHy8qJ79+6cPXs22bq3bt2ifv36dO3alYiIiBeaNv7pp59o3rw55cqVo2rVqnz44YfJ3hjx8WOdO3cutWvXxtfXl4sXL3Lt2jUGDhxI1apVKVWqFDVr1mT69OnExcUZ1gMAdO7cmXnz5iWZlvXz82PZsmX069cPLy8vKleuzMSJE4mJiTHsd+/evbz11luUKVOGRo0asXHjxgw5tXvv5hViY6KTrKPKkSc/AHduXEzS5va1CwA4uT6lzfWLREdF8Nft6+R0Mf7gzJI1B7aZHbhzPRiAkOCzOLsV4cDONcwf2JDJXXxYNqYDl84eMbSxd8xOVMSjJElcYiJy79bVFz1skzJ1n1es24qqDd82qhMacolbV87j7JaQzNnZO5KveDkg4Q9hyKVAti4Zg71jdkpUfv3fHLbZccidjbZr3qNan9exsrN+dgPh9rUL5MjtRqZMxl+UnfLkN5yfT2uX3FrPHHnyG/2+VPBrSe/pm/H0TvmxWb98s5S42BhqNn/+22xIxpfhkrv333+fn3/+mcmTJ7N582by589Pt27d+Ouvvzh+/DidOnWiWLFifPXVV3zyySccO3aM7t27G+4H8/7773P8+HEWL17MihUr+PHHH7l6NeU/eFOnTuWtt97if//7Hx07dmTevHkcPHgQSFhvNmzYMFq2bMmWLVto3rw5M2bMSHF7gwYNIk+ePGzcuJENGzaQKVMm+vbtm6ReaGgoXbp0wc3NjcWLFxtuePg8QkND6du3Ly1atGD79u3Mnz+fgwcPMm3atBTbrV27lrlz5zJ//nzc3d3p3bs3Dx48YMWKFezcuZNu3brx2WefsWfPHlxdXdmwYQOQsN6vW7duyW7zk08+wdvbmy1btjB06FBWr17Ntm3bADhz5gzvvvsuVatW5dtvv6V3795MnTr1uY8zPUWGhwFgm9nBqNzWzh6AqPCHSds8SmyTxajcJrP939t8aKhj80QdABs7e8N+Hz24x5kD33H0x2+o024grd6fhbWNHeum9jGsuStdvSEWFhZsmjuEW1fOE/HwASd/3c7xn7cAEB0Z/u8O3kRM3edPio6KYOuSj7CytsH7jTZJXv9q1gA+G9mWi6cP4tf2/acuYH/V2GXNjINzVlOH8VKJfBSGzRPnPaR8fkLC78yT5z4k/M48/vuSK28ho1Hr5FwLOsXvO76g0TvjsLK2SbGuvFwy1Jq7oKAgfv75Z5YtW4avry8AY8eOJWvWrNy9e5fly5fj4eHB6NGjAShSpAizZs2iadOm7N27l/z587N3715WrlxJpUqVAJg5cya1a9d+6j4BmjVrRtOmTQHo1asXy5Yt48iRI4arWurXr0/37t0BKFSoEBcvXmTlypVP3d6lS5eoVq0abm5uWFtbM2nSJIKCgoiLiyNTpoR8+t69e3Tp0oW8efOyYMGCJI8neZaQkBCioqLImzcvbm5uhgQxMcl9mqZNm1KmTBkAIiIiaNq0KW+++abhZotdunTh008/5ezZs9StW9ewti5btmxkyZL0AwXA19eXzp0Tpg3z58/PF198wZEjR2jWrBkrV66kdOnSDB06FIDChQtz584dPv744xc63vQQH5fyaiELi6TfheLj457Z5smp7SR1/j4nYmOiiXgURtdxX5DVKQ8A+T28WPhBE/ZtW0mz9ybh7FaY1oPmsH35RJYObwWAS6ES1GzRm91fTEt2fVpGZuo+f1xk+EO+njOIa0GnaN5vGtly5U1Sx7dpT6o0fJuTv+1g26djiY+Lo3ytZinuSyQ+Li7JeZvSOZrc+flPu6ef/8n9vjxNTFQkW5eMwadee9yKlH7udvJyyFDJXWBgwuhE+fLlDWW2trYMHz7c8Hr16tWN2nh6euLo6MjZs2cNz3FLTF4AcuXKRf78+VPcb5EiRYx+dnR0JDo64aqjU6dO8cYbbxi97u3tnWJyN3DgQCZNmsTatWvx8fGhRo0aNGrUyJDYAcyePZvo6GhKly79wokdQIkSJQx3rXZ2dqZ69erUqlWL119PeZro8fvo2NnZ0bFjR3bu3Mnx48cJDg7m7Nmz3L59m7i4lP+APi6l/jt9+jTVqlUzet3b2/u5t52ebO0TvkVHRhiPFkX+/W34ydGlx9tEhT9Kvo29g+FbdrKjUOEPsft7u7Z29uTMW8iQ2CXsMwv5ipXjRnCAoaxwmar0mbWNv25dAyB7bjf++GkzAJmzpLxwOqMxdZ8nun/nBl/OHMCdG8G81WcyHhVrJRtvfo+EO8cXKlWZv25d49cty5TcyTP9snkpv3yz1KjM07suD/+6k6Rucufn42wzOxAZ8ShJeWT4w2R/X57mx68XEh8fj2/TnsTF/r2M5u+EMy42BotMlineikgytgyV3FlZpRzO077pxMfHY21tbTgRn0xMnrXd5JKrxH1ZWVm9UKID0KFDB+rXr89PP/3Evn37mDt3LosWLWLz5s3kypVwNVK1atVo0aIF/fr1o0GDBoaRyhcxc+ZM+vTpw88//8xvv/3GkCFDqFixIp9//vlT2zw+9fvo0SM6duxIREQE9evX56233qJs2bJ06NDhheJIqf8sLS1fuP9MJUfufFhksuRuyGWj8tC/f87lVihJm8QFyHdDLuPi7mkoT9xGrryFsLGzxzFH7iTbffhXKFERD8mZN2G7OVwKEBuTdIF+bGwMVtYJ79tft69z4eR+yvg2JHtuN0OdGxcDyOyQjWzOSUebMjJT9znAzct/sm5aH2KiImk/dAEFPCsatbkWdIp7t65SsrLxlzwX9xJcOXf8RQ9ZXkFetVtQ9ImLGgIP/0DQiX3Ex8UZjdTdDblsdH4+KadrQW4EJ13DfTfkMnkLP/8IXMDB7/nr9nWm96ye5LXJXXxo1HMs5Wrq4piXVYZac5c4AnTixAlDWUxMDH5+fuzcuRMPDw8OHz5s1CYgIICwsDCKFClCiRIJNx09cuSfBej379/n0qVL/zomT09Pjh07ZlR29OjRp9a/c+cO48ePJzo6mubNmzN9+nS2bNnCrVu3OHDggKFevXr1eOONN2jQoAGjR48mLOzpayySc+zYMSZNmkThwoXp0qULS5cuZdKkSfz+++/cuZP022By9u7dy6lTp1i1ahX9+/enQYMGODg4cOfOHUNy9l+/uXl6enL8uPEfwJT6z5SsbGwp4OHF2UN7jL5InD3oj629A3kLl0rSxilPAbI7u3Hm4PdG5QEH/XFyKUD2v5OtQmWq8OcfvxhdXRlw0B+LTJa4l0wYySxarjohwYHcvhpkqPPowT2u/PkHBf4eMXp4/y7/Wzaei6cPGuqE3bvN6d93Ucyr5kv3TdvUfX7/zg3WTukNFhZ0HrMiSWIHcP7Yr3y7aBT379wwlMXFxXLx9EGjK5tFnsYxhzN5C5c0+le4TBWiIh5y/u8rtyHh9/vS2SNGV9A+qVCZqty+doFbj31O3LoaxO1rFyiUQrsntR40h67jVhv9c3H3xMXdk67jVlPM6+lX2ErGl6FG7goVKsQbb7zBuHHjGDt2LHny5GHp0qVERkbi4+ODq6sr7du3Z8KECbRv357bt28zYcIESpYsSdWqVbG2tqZ+/fqMHz8eGxsbcuXKxaxZs4iK+ve3K+jZsyfvvvsuZcuWpXbt2hw+fJjVq1c/tX62bNn48ccfuXTpEh988AEODg5s2rQJa2trSpdO+q1q5MiRNGjQgGnTpjF+/PjnjsvBwYG1a9dibW1N69atiYyMZPv27bi7u5MjR47n2oaLiwsAW7ZsoV69ely/fp1Zs2YRHR1t6DN7+4RF6oGBgZQs+eJPQOjWrRvNmjVjxowZtGjRgnPnzjF37lzgvyeOacG3aQ/WTO3NpnnDKPdaU678eYx921fh17of1raZiQwP4/bVILLnzk+WrAn97NusJ9s+HcsOh+wUr1CTwMM/cWb/d7zVZ7Jhu1Ubvs3pfbtYP70vld/sSOiNS/ywYT5etZuTLVfCekfveu059vMWvpw5gFqt+mBtm5m9336GBRZUadAJANdCJchXvDw7V06mTrv3schkyU8bFpApk+VLe7WbKft81xfTeXg/lDe7jiAqPIyrj43E2WR2wNmtMF5+LTiy52u+nDmAGm+9g6WVNYe/38CtK+doN3RB+naWmI0CnhUpWKIS3y4aiV/bAWR2yMYvm5ZgZ+9IhTqtDPVuXQ0iNjrKMEpdsvIb/LZlOeun98WvTX8A9nw5l9z5i1LyBa7eTu6LiY1dwnKGl/lpN5IgQyV3AJMmTWLatGkMGDCAqKgoypUrx7Jly3BycsLJyYnPPvuMOXPm0KxZMxwcHKhbty4ffPAB1tYJVwVNnTqVqVOnMnDgQOLi4mjTpg2hoaH/Op6aNWsyfvx4lixZwsyZMyldujTt2rV7aoJnZWXFp59+ytSpU+nSpQvh4eGUKFGCpUuXGh4c/LhcuXIxdOhQRo4cyZtvvvnccRUpUoR58+Yxf/581q5dS6ZMmahSpQqffvqp0dq+lJQtW5bhw4ezcuVK5syZQ548eWjQoAGurq6G0dMcOXLQokULpk2bRnBw8DPX9D2pePHizJ8/n1mzZrFy5UoKFSpkuCI58T3LSNxL+dCi/3R+2bSYr+cMwjFHbuq0fd+QXN24GMDqSe8YTVmUq9mE2Jgoft/+Bcd+/pYczm40eXc8JavUM2w3V95CtBu2AP91c9g4byj2DtmpXK8DNVv8k5BlzpKVt8esYM/6uez8fAqxMdHkL16exqOXkzVnQiJuYWFBi/7T+X7NTLYv/xiIp2CJSrRoNcOQsLxsTNXnsTHRnPvjFwB2rJiUJK4CnhXpNPJTHLLlpPPo5exZP5cdKyYRFRmOW5HSdBy+xLAGT+TfaDFgBt+vmcmedXOIj48nX7FyNO83lcxZ/rnyeOfKyfx1+5rh0WFW1ja0H7aQ3auns335RDJZWlG4dBXqdvyATJYZ7k+6mIhF/LMuK3vFHThwgFy5clG48D83jFy8eDFff/0133//fQotBeD48eNYWVkZjfpt3bqVESNGcPTo0Weuh0zJqgNJF8tL6uvsk/BtXv2dPhL7e9a1VSaO5NUxKG/C1f46x9NH4jme1lLz/UyvmFNLhlpzlxHt3buX7t278/vvv3Pt2jX8/f35/PPPDbdOkZSdOXOGzp074+/vz7Vr19i3bx/z5s2jYcOG/ymxExERkeTpr+sz9O3bl0ePHjF06FBCQ0NxdXWlS5cu9OiR/HP/xFjr1q25desWkyZNIiQkhJw5c9KwYUP69+9v6tBERETMkpK7Z7CxsWHUqFGMGjXK1KG8lCwsLOjbt2+yT+gQERGR1KdpWREREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIhFfHx8vKmDEBEREUlNqw48TLVtdfbJkmrbSg8auRMRERExI1amDkDk30rNb2XydInfWNXf6UP9nf4S+3zWtVUmjuTVMChvZ1OHYPY0ciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiIpIG4uLimDt3LjVq1KB8+fL07NmTy5cvP7X+n3/+yTvvvEPlypWpWrUq/fv359q1ay+8XyV3IiIiImlg4cKFrF27lgkTJrB+/Xri4uLo0aMHUVFRSerevXuXrl27YmdnxxdffMGnn35KaGgoPXr0IDIy8oX2q+ROREREJJVFRUWxfPly+vfvT61atfD09GT27NncuHGD3bt3J6n//fff8+jRI6ZNm0bx4sUpXbo006dP5/z58xw5cuSF9q1ny4qIiIikoE6dOim+7u/vn6QsICCAhw8fUrVqVUNZ1qxZKVmyJAcPHqRRo0ZG9atWrcrChQuxs7MzlGXKlDAGd//+/ReKV8mdiIiISCq7ceMGAK6urkbluXPnNrz2uHz58pEvXz6jsqVLl2JnZ4e3t/cL7VvJnYiIiEgKkhuZe5bw8HAAbGxsjMptbW3566+/ntn+iy++YPXq1YwaNQonJ6cX2reSOxEREZFUlji9GhUVZTTVGhkZSebMmZ/aLj4+nk8++YRFixbRu3dvOnXq9ML71gUVIiIiIqkscTr25s2bRuU3b94kT548ybaJjo5myJAhLF68mOHDh/P+++//q30ruRMRERFJZZ6enjg4OLB//35D2f379zl9+vRT19ANHTqUnTt3MnPmTLp06fKv961pWREREZFUZmNjQ8eOHZkxYwZOTk64ubkxffp0XFxceOONN4iNjSU0NBRHR0fs7OzYtGkT27dvZ+jQofj4+HDr1i3DthLrPC+N3ImIiIikgf79+9OyZUtGjRpFu3btsLS0ZNmyZVhbW3P9+nV8fX3Zvn07ANu2bQNg2rRp+Pr6Gv1LrPO8NHInIiIikgYsLS0ZMmQIQ4YMSfJavnz5OHv2rOHn5cuXp9p+NXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGrEwdgMjLIOjEPn7csIBbV4PIktWJSnVbU7lBJywsLJ7a5tS+nez99jPu3bxKNmdXqjXqStkajY3qnNn/Hfv+9zl3rl/E1t6RQqV8qN2mPw7ZchrqRDx8wA8b5nP20B6iIh6RO39RarXsg3spnzQ73vSWVv17Leg0/utmc/3CaWwzZ6FsjcbUbN4LSytrQ50rfx7jh6/mc+PiGaxt7SnhU5darfpgmzmLoU5MdBS/fLOEk7/t4NH9uzi5FKB60+6UrPxG6neGCUVFPGLP+k8I+PtcK+BRgdc7fkBOV/cU24X9dYfv18wi6MRvxMXGUqRcdep2GIRjdudk6x/cvZ79O76g7+z/PXWbcbExrBzfFWsbOzqN/PS/HJZZC7t1nw1dl1JvYivyli9o6nAkg0j3kTsPDw82bdr01NfnzZuHn5/fc9fP6J48nif5+fkxb968dIzoxe3fvx8PDw+uXLny3G1++OEHzp07l4ZRpZ+r547z5cwB5MzrTssB0yld7U38v/yEfdtWPrVNwEF/Ni8aSeHSVWj5/kwKelZi69KPOLVvl6HOqX272DR/GC6FStCi/3RqterDxdMHWTP5XWKiIgGIi4tl/Yy+BB75Eb+2A2jRfzp29llZP7M/IZcC0/rQ00Va9e/dm1dYO7UXVja2NO87lcpvdmL/zjXs+mKaoU7IpUDWTOmNjZ09LfpPp3brvpw58B2b5g0x2t+3i0Zx+PsNVGvUldaD5pCnoAffLBjO+eO/pnp/mNLmhSM4c+B7arfuR5N3x/Pg7k1WT3qH8If3n9omLjaG9dP7ce38Cd7sMoL6XYZz5c9jrJvah9iY6CT1T+3bxfdrZz0zlt+2ruR60Kn/dDzmLuzmff43ZB1RDyNNHYpkMBl+5G7v3r04OjqaOow08/XXX2Nra2vqMFLk5eXF3r17cXJyeq76V69epVevXqxatYqiRYumcXRp7+dNi3Ep6EnTXhMBKFK2OnGxMfy6ZTne9dphbWOXpM0PX82nhE9dXu84+O821Qh/+Bc/bVxIqar1APht6zKKlPOlQdeRhnY5XQqyctzb/PnHL5Twqcup33Zw/cIZuk9YQ+78xQAo6FmRT0e24cKJ38lToHhaH36aS6v+3bdtJTZ2WWg9cDaWVtYULe+LtY0du1ZNpXrjbmTL5cqBnWvInCUrLQfMMBrN2/bpWO5cv0hOV3cunT1CwMHvaTN4HkXLVQfAvZQPd0Muc/7YbxQpWz2tuyhdXPnzGH8e/dnoOPN7VGDBoEYc/v4rfJv2SLbdmQPfExIcwDtTvsbZrTAAeQp6sHR4K87s/47S1RsA8PCvUH7auJCjP2wis0O2FGMJCQ7k163LyZItVyoeofmIj4sncPdxfl/kT7ypg5EMKcOvuXN2dsbOLumHu7lwcnIiS5Ysz65oQjY2Njg7O2Npaflc9ePjzefjJiY6iuAzh/GoVNuo3NOnLlERD7l89o8kbe7dukbojWA8KhqP2JbwrsvdkMuE3rhEfFwchUpXwat2c6M6OfO6AwmjTgBnDvpTwLOCIbEDsLKxpff0zVRp2DkVjtC00qp/IWGqt2h5X6OkzdOnLvHxcQSd2AfAay370GbwXKM6if+PiYoCIOCAPzly5zMkPAAWFha8PWYFb3QyHuF7mQWd2Ie1bWYKl6liKMuSNQcFPCty/tjTRyiDju8jp6u7IbEDcHYrTK68hTj3WLtfty4j6MQ+WvSfTrHyNZ+6vdiYaLYsGY33G23J6appxuTcCQrhl1k7KPZGGfyGNzF1OJIBvVBy5+HhwZo1a2jdujVlypShcePG+Pv7G15PbgoyubKgoCDatm1L6dKlefPNN9mxY0eK+3x8WnbLli00adKEsmXLUqdOHT7//POntr148SLdu3enYsWKeHl50b17d86ePfvcxwMJ04vNmzenbNmyvP7668yZM4eovz/0AQIDA3n33Xfx9vamdOnS1KlTh+XLlz81ppUrV1KmTBl++OEHwHhadt68eXTp0oWlS5dSs2ZNypQpQ8eOHTl//ryhfWhoKAMHDqRSpUpUrlyZGTNm0Llz56dO7SZOqe7evZu6detSvnx5unTpYrTN2NhYVq5cSb169ShTpgz16tVj3bp1SbaROC3r5+fHsmXL6NevH15eXlSuXJmJEycSExPDlStXqFOnDoBRXMuWLaNu3bqULl0aPz8/FixY8FIkgfduXiE2JhonlwJG5Tny5Afgzo2LSdrcvnYBACfXp7S5fhGLTJmo234QHhVrGdUJPPwjgOEPZUjwWZzdinBg5xrmD2zI5C4+LBvTgUtnj/zXQ8sQ0qp/o6Mi+Ov2dXK6GCcHWbLmwDazA3euBwOQ1Sm3YfQzKiKcCyf38+OG+eQrXp48BRPKQ4LP4pyvKCd/28HiYc2Z9LY3i4c15+yhH/7j0Wcst69dIEduNzJlMv4S55Qnv6G/ntbuyfcPEt6Px9+/Cn4t6T19M57edVKM45dvlhIXG0PN5r1e7ABeIQ65s9F2zXtU6/M6VnbWz24gr5wXHrmbMWMGTZs25dtvv+W1116jb9++HDnyYn9oPv/8c5o1a8bWrVupV68eAwcO5OTJk89st337doYNG0bTpk3ZsmULgwYNYsaMGU9dkzdo0CDy5MnDxo0b2bBhA5kyZaJv377PfTw///wz77//Pq1bt2bbtm189NFH7NixgyFDEr6th4eH061bN7Jnz8769evZtm0b9evXZ+rUqZw5cyZJPGvWrGHWrFnMnz+f2rVrJ3kd4NChQxw+fJilS5eydu1a7ty5w7hx4wCIi4vj3XffJTg4mM8++4zly5fzxx9/cODAgWf23ZQpUxg9ejRffvklVlZWdO7cmQcPHhheW7hwIX379mXr1q106NCBjz/+mJUrVz51e5988gne3t5s2bKFoUOHsnr1arZt24arqysbNmwAEpLVbt26sWfPHpYsWcK4cePYvXs3gwcPZtGiRWzZsuWZcZtaZHgYALaZHYzKbe3sAYgKf5i0zaPENsYjsjaZ7f/eZtI2AHdDLuO/bjZ5CnpQtJwvAI8e3OPMge84+uM31Gk3kFbvz8Laxo51U/uYxZq7tOrfxDo2mZOOitvY2Rv2myg+Pp7Z7/mxdmpvoiLCqddpqOG1Rw/uci3oJHu+nEu1xt1oO3geOV0L8fXcwWa15i7yURg2T7wPkHx/GbULD0vyXkDCe/j4+5crbyGjEdLkXAs6xe87vqDRO+OwsrZ5gehfLXZZM+PgnNXUYUgG9sJr7po3b06HDh0AGDx4MAcOHGD16tVUqFDhubfRvn172rZtC8D777/P77//zsqVK5kxY0aK7T7//HMaNGhA9+7dAXB3d+fhw4dPnba9dOkS1apVw83NDWtrayZNmkRQUBBxcXFkypTpmcezePFiWrdubYi1QIECjBs3jrfffpsrV65gb29P586d6dChg2FqtX///nz22WecPXuWEiVKGGL56quvmDZtGgsXLsTX1/epxxgTE8O0adPIli1hTUrbtm2ZPn06AAcOHOD48ePs2LGDwoUTRnbmzJmT4gUbiYYNG8Zrr70GJCS0tWrV4n//+x+NGjVi3bp1fPjhhzRu3NjQr1euXGHp0qW8/fbbyW7P19eXzp0TpgXz58/PF198wZEjR2jWrJlhbV62bNnIkiULly5dwsbGBjc3N/LmzUvevHnJnTs3efPmfWbcphYfl/LoooVF0u9H8fFxL9zm9rULrJvWB4tMVrToNw2Lv8/P2JhoIh6F0XXcF2R1ygNAfg8vFn7QhH3bVtLsvUnPeygZUlr177NGhRP7N1FcbAytBs4mJjqS37au4IuPe9B51HLyFCxObEw0Yfdu023CGlzdE36n3Ut589mItvzyzacv5Zq7+Li4JP2YUp892V/G7Z7+fiT3/j1NTFQkW5eMwadee9yKlH7udiKS1Asnd5UrVzb62cvLi19/fbFvrxUrVjT6uVy5cvz+++/PbBcYGEjDhg2Nylq3bv3U+gMHDmTSpEmsXbsWHx8fatSoQaNGjQyJHaR8PKdPn+b48eN8/fXXhtcTPwDPnz/Pa6+9Rvv27dm2bRunT5/m0qVLBAQEAAmjbIlu3rzJ2LFjsba2xs3NLcVjzJUrlyGxA3B0dCQ6OtoQT7Zs2QyJXWL9QoUKpbjNJ48ze/bsFCpUiMDAQIKCgoiOjk7ynvj4+PD5559z586dZLdXpEgRo58fj/NJTZo0YePGjdSrV4+iRYtSrVo16tWr91Ikd7b2CSMZkRHGI0iJo29Pjjg93iYq/FHybeyN2wSfOcTXnwzGxs6ejiOWGKYXIWH0I2feQobELmGfWchXrBw3ggP+7WFlGGnVv4kjScmO/IU/xO6J7VpaWRvWmhXwrMCCgY04sHstjXuOxSZzFhyy5zIkdgCZMlniXtqHo3teziv5f9m8lF++WWpU5uldl4d/Jf19T66/Hmeb2YHIiEdJyiPDHyb7/j3Nj18vJD4+Ht+mPYmLjUko/PvzNi42BotMlineGkdE/vHCyZ2VlXGT2NhYo2TpSTExMUnKnqwfGxuLjc2zh+Cf3PezdOjQgfr16/PTTz+xb98+5s6dy6JFi9i8eTO5cuVKdpuPH09cXBw9evTgrbfeSrJtZ2dnbt26RZs2bXBycsLPzw9fX1/KlCljGCFLZGFhwaeffsqcOXMYMWIEa9aseWqfpdQPlpaWRknji3jacT7t23rifp7W58nF+bRtOTk58e2333L06FF+/fVX9u7dy6pVq+jXr1+SafKMJkfufFhksuRuyGWj8tC/f87lljSxTlwEfjfkMi7unobyxG3kyvtPm1P7drJlyRhy5XWnzeD5ZHXKbbx/lwLExkTxpNjYGKysX/4LjdKqf23s7HHMkTvJdh/+FUpUxENy/v0eBB75CTt7Bwp4/vPlxs7ekex58hF29xYATnkKcP9OCPHx8UbJRVxMDFY2GftK96fxqt2Cok9c1BB4+AeCTuwjPi7OaKTubshlQ38lJ6drQW4En01SfjfkMnkLP/8IXMDB7/nr9nWm90w6Ejq5iw+Neo6lXE1dPCDyPF54zd2JEyeMfj569CilSpUCwNramocPjb8pBwcnXYh76pTxvYuOHDlCsWLFktR7UpEiRZLsf/LkyfTv3z9J3Tt37jB+/Hiio6Np3rw506dPZ8uWLdy6dctojVpKx1OsWDEuXLhAwYIFDf9u3LjBtGnTePjwIdu2bePevXusW7eO9957j9dff52//voLME50nJ2dqV69OhMnTuTEiROsWrXqmceaHE9PTx48eGB0McTdu3eT7eMnPX6coaGhBAcHU6pUKYoUKYK1tTWHDx82qn/o0CGcnZ2NRhGf15Pfrrds2cK6deuoWLEi/fv356uvvqJVq1Zs3779hbed3qxsbCng4cXZQ3uM3tOzB/2xtXcgb+FSSdo45SlAdmc3zhz83qg84KA/Ti4FyO6cMGJ57o+9fLt4NPmKlaPz6OVJEjuAouWqExIcyO2rQYayRw/uceXPPyjg4ZVah2kyadm/hcpU4c8/fiEmOsqojkUmS9xLegNwYOcadqycTFxcrKHO/dAQbl+9YLhCuUi56oSH3ePCyX9mF2Jjojl/Yh/5X9L3wDGHM3kLlzT6V7hMFaIiHnL+7yuJAR7ev8uls0eMrqB9UqEyVbl97QK3HjtHb10N4va1CxRKod2TWg+aQ9dxq43+ubh74uLuSddxqynm9fQrbEXE2AuP3H3++ecULlyY0qVL89VXX3H27Fk+/vhjAMqXL8+9e/dYtmwZ9erVY+/evfz8889kz57daBsrV66kQIEClCtXjvXr1xMYGMjMmTOfue933nmHfv36UbZsWV577TWOHTvGunXrGD9+fJK62bJl48cff+TSpUt88MEHODg4sGnTJqytrSld+p9vkykdT8+ePXn//feZP38+DRs25MaNG4wcOZJ8+fLh7OyMi4sL4eHh7Ny5k4oVKxIUFMTkyZMBjK6oTeTh4UH37t0N6+QKFEh6hVlKKleuTLly5Rg6dCijR4/Gzs6O6dOnEx4e/szpinHjxjFhwgQcHR2ZOnUqzs7O1K9fn8yZM9OmTRvmzp1L9uzZKVOmDHv37mXt2rUMGjToX02D2NsnLGwPDAykZMmSREZGMnXqVLJkyUKlSpW4ceMGBw8epFKlSi+8bVPwbdqDNVN7s2neMMq91pQrfx5j3/ZV+LXuh7VtZiLDw7h9NYjsufOTJWuOhDbNerLt07HscMhO8Qo1CTz8E2f2f8dbfRLOj5ioSP63bDy2dvZUb9LdKHkDcHTKQ1anPHjXa8+xn7fw5cwB1GrVB2vbzOz99jMssKBKg07p3hdpIS36F6Bqw7c5vW8X66f3pfKbHQm9cYkfNszHq3ZzsuVyNWxn7dT3+Gb+h3jVbs6j+3fZ++1n2GVxpPLf/Vu62psc+m493y4aSa3W/cjqlJsDu9bxIDSE5v2mpn+HpZECnhUpWKIS3y4aiV/bAWR2yMYvm5ZgZ+9IhTqtDPVuXQ0iNjrKMGpasvIb/LZlOeun98WvTcIX7T1fziV3/qKUrPz6c+//8dv9JLKxS5hez1u45H85NJFXzgsnd23btmXlypUEBgbi6enJsmXL8PRM+CWvUqUK/fr1Y/ny5cydO5eaNWvSv3//JCNV7733Hl988QWjR4+maNGiLF269LnWjfn5+TF+/Hg+/fRTpk6dipubG8OHD6dZs2ZJD8zKylCvS5cuhIeHU6JECZYuXWqUVKV0PPXr12f27NksWbKExYsXkz17dvz8/Bg8eLDh9VOnTjFlyhTCwsJwc3OjVatW+Pv7c+LECdq1a5ckrvfee4+dO3cyYsQIvvjii+fu90Tz5s1j/PjxdOnSBVtbW9q3b09QUBDW1ilfhdamTRuGDh3KvXv3qFKlCqtWrSJz5swADB8+nBw5cjBjxgxu376Nu7s7Y8aMSXE9Y0py5MhBixYtmDZtGsHBwYwaNYp79+6xcOFCrl+/TrZs2ahXr56hHzM691I+tOg/nV82LebrOYNwzJGbOm3fNyRXNy4GsHrSO0bTRuVqNiE2Jorft3/BsZ+/JYezG03eHU/JKgk32L3y5zHC7t0GYN2095Lss8Zb71CzeS8yZ8nK22NWsGf9XHZ+PoXYmGjyFy9P49HLyZrTJZ16IG2lRf9CwvRsu2EL8F83h43zhmLvkJ3K9TpQs8U/t9hwL+lN+2EL+XnjIjbOHUomS0uKlK2G32OPgLO0sqb9h4v58av5/LRhAZERj3Bx96T9h4uM1uGZgxYDZvD9mpnsWTeH+Ph48hUrR/N+U8mc5Z8rM3eunMxft68ZHh1mZW1D+2EL2b16OtuXTySTpRWFS1ehbscPyGSZ4e+TL2KWLOJf4GZjHh4eTJ48mebNmz+78kvgZTue0NBQjh07hq+vryGZi4qKonLlynz00UfJJrn79++nc+fO+Pv7ky9fvnSOOG2tOpD8LUUkdXX2SRg9UX+nD/V3+kvs81nX/t2SGXkxg/Kmzw3YU/N3KPEceVnoa9VLxMrKioEDB9K2bVvatWtHdHQ0y5Ytw8bGhpo1tR5FREREXoLHj8k/smbNyuLFi/njjz9o1qwZbdq04fbt26xateq5n/sqIiIi5u2FRu4ef3SXOXgZj6dKlSqsX7/+uetXrlz5pTxOERER+Xc0ciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiIgZUXInIiIiYkaU3ImIiIiYESV3IiIiImZEyZ2IiIiIGVFyJyIiImJGlNyJiIiImBEldyIiIiJmRMmdiIiIiBlRciciIiJiRpTciYiIiJgRJXciIiIiZkTJnYiIiEgaiIuLY+7cudSoUYPy5cvTs2dPLl++/NT6d+/e5YMPPsDb2xsfHx/GjRtHeHj4C+9XyZ2IiIhIGli4cCFr165lwoQJrF+/nri4OHr06EFUVFSy9fv3709wcDArV67kk08+4aeffmLs2LEvvF8ldyIiIiKpLCoqiuXLl9O/f39q1aqFp6cns2fP5saNG+zevTtJ/aNHj3LgwAGmTp1KqVKlqFq1KuPHj+fbb78lJCTkhfat5E5EREQklQUEBPDw4UOqVq1qKMuaNSslS5bk4MGDSeofOnQIZ2dnihQpYijz8fHBwsKCw4cPv9C+rf592CIiIiLmr06dOim+7u/vn6Tsxo0bALi6uhqV586d2/Da40JCQpLUtbGxIXv27Fy/fv2F4tXInYiIiEgqS7wQwsbGxqjc1taWyMjIZOs/WTel+inRyJ2IiIhICpIbmXsWOzs7IGHtXeL/ASIjI8mcOXOy9ZO70CIyMhJ7e/sX2rdG7kRERERSWeIU682bN43Kb968SZ48eZLUd3FxSVI3KiqKe/fukTt37hfat5I7ERERkVTm6emJg4MD+/fvN5Tdv3+f06dP4+3tnaS+t7c3N27cIDg42FB24MABACpWrPhC+7aIj4+P/5dxi4iIiGRIqw48TLVtdfbJ8q/azZ49m/Xr1zNp0iTc3NyYPn06V65cYdu2bWTKlInQ0FAcHR2xs7MjPj6e9u3bExkZydixY3n06BEjRoygcuXKTJ48+YX2q+ROREREJA3ExsYya9YsNm3aREREBN7e3owZM4Z8+fJx5coV6tSpw+TJk2nevDkAd+7cYdy4cfzyyy/Y2tpSv359hg8fjq2t7QvtV8mdiIiIiBnRmjsRERERM6LkTkRERMSMKLkTERERMSNK7kRERETMiJI7ERERETOi5E5ERETEjCi5ExERETEjSu5EREREzIiSOxEREREzouRORERExIwouRMRERExI0ruRERERMyIkjsRERERM2Jl6gBEzNW1a9eSLbewsMDa2honJycyZdL3K3l56RwXyZgs4uPj400dhIg58vT0xMLC4qmv29jY0LBhQ8aOHYuNjU06RmbeIiIiyJQpEzY2Npw/f54ff/wRLy8vKlSoYOrQzI7O8fS3detWvL29cXFxYeHChWzfvp0KFSowcuRIbG1tTR2eZBD6SiWSRiZNmkTWrFkZMWIE33zzDd988w2jR48me/bs9O3bl4kTJ3L48GHmzZtn6lDNxsGDB6lZsyaHDx/m5s2btGrVikWLFtGpUyd27Nhh6vDMjs7x9LVw4UJGjhzJtWvXOHz4MHPnzsXLy4v9+/czY8YMU4cnGUm8iKSJRo0axf/vf/9LUr579+74Jk2axMfHx8f/9ttv8bVq1Urv0MxW27Zt4z/88MP4Bw8exC9btiy+Ro0a8REREfFr1qyJb9q0qanDMzs6x9OXn59f/Pbt2+Pj4+PjP/744/g2bdrEx8fHxx88eDDe19fXlKFJBqORO5E0EhwcTMmSJZOUFytWjAsXLgDg7u7OnTt30js0s3X69Gnee+89HBwc2Lt3L7Vq1cLW1pbXXnuNoKAgU4dndnSOp6+bN2/i5eUFwG+//Yavry8Arq6u3L9/35ShSQaj5E4kjRQtWpSNGzcmKd+4cSMFCxYE4MyZM+TJkye9QzNbmTNnJioqisjISA4fPkzVqlUBuH37No6OjiaOzvzoHE9fLi4uXLhwgeDgYM6dO0f16tUBOHToEC4uLiaOTjISXS0rkkYGDRpEr169OHjwIF5eXsTFxXHs2DFOnjzJ/PnzOXPmDMOGDaNr166mDtVsVK5cmenTp5MtWzYyZcpEjRo1OHPmDBMnTqRy5cqmDs/s6BxPX23btuX999/HxsYGDw8PvLy8WLNmDdOmTaN///6mDk8yEF0tK5KGzpw5w8qVKzl9+jRWVlZ4enrSrVs3ihUrxokTJzhz5gytW7c2dZhmIzQ0lI8++ojLly/Tt29f6taty5QpUzhx4gRz5szB2dnZ1CGaHZ3j6WvPnj1cvnyZJk2akCNHDrZu3UpkZCQtW7Y0dWiSgSi5ExGzFhUVpdtwiFmYP38+3bt3J3PmzEblYWFhfPLJJ4wcOdJEkUlGo2lZkTQSFxfH1q1bOXLkCNHR0Tz5PWry5Mkmisy8Xb16lWPHjhEVFZXktWbNmqV/QGZM53jaO3/+PKGhoQAsWLAAT09PsmXLZlQnMDCQr776SsmdGCi5E0kjkyZNYs2aNXh6euLg4GDqcF4JX331FWPHjiUuLi7JaxYWFkruUpnO8bR3+fJlevXqZbhZdN++fZOt16JFi/QMSzI4TcuKpJHKlSvz4Ycf8tZbb5k6lFeGn58ftWvXZuDAgUo20oHO8fRx7do14uLiqFu3Lhs2bMDJycnwmoWFBfb29mTPnt10AUqGo5E7kTQSFRWFt7e3qcN4pdy6dYuuXbsqsUsnOsfTR968eQHw9/cnb968KT7yTQSU3ImkmRo1avDTTz/RoUMHU4fyyihRogTnzp0jX758pg7llaBzPH25urqyZcsWrXGUZ1JyJ5JGypcvz/Tp09m3bx9FihTB2tra6PWnrZ2Rf69Hjx6MHz+ey5cvU7hw4SRXyWqUKXXpHE9fWuMoz0tr7kTSiJ+f31Nfs7CwwN/fPx2jeTV4eno+9TULCwvOnDmTjtGYP53j6UtrHOV5KbkTEbNx9erVFF93c3NLp0hEUp+Xlxdbt27VsgN5Jk3LiqSia9eu4erqioWFBdeuXUuxbuIiaUk9iclbWFgYQUFBWFtbkz9/fk1hpSKd46ajNY7yvDRyJ5KKSpQowd69e8mZMyeenp7JXtUWHx+vKcI0EhcXx9SpU1m7di0xMTHEx8djY2NDmzZtGDFihK4yTAU6x01n+fLlzJ07F19fX61xlBQpuRNJRQcOHKBChQpYWVlx4MCBFOv6+PikU1SvjkWLFrFs2TL69++Pj48PcXFxHDx4kAULFvDOO+/Qo0cPU4f40tM5bjpa4yjPS9OyIqno8T9mBw4cSPE5kPrDl/o2bNjARx99ROPGjQ1lJUuWxMnJiXnz5im5SwU6x01nz549pg5BXhJK7kRSkZ4DaVp37tyhXLlyScrLlSvH9evXTRCR+dE5nr60xlH+DSV3IqlIz4E0LXd3d3777TcKFChgVP7rr7/qStlUonM8fdWpU8ewxtHPz09rHOW5aM2dSCrTcyBNZ/PmzYwZM4ZOnTpRoUIFAA4fPsyaNWsYOnSorjJMJTrH04/WOMq/oeROJI1cvXpVz4E0gZUrV/LZZ59x+/ZtAHLlykX37t3p2rWriSMzPzrHTSc0NBQrKyuyZs1q6lAkA1JyJ5KG/P39CQwMJDY21lAWFRXFiRMnWLFihQkjM3+hoaHEx8eTM2dOU4di1nSOp69Vq1axdOlS7ty5A/zz5aVLly6mDUwyFK25E0kjM2bM4LPPPiNXrlzcuXOHPHnycPv2bWJjY2nYsKGpwzNbly9f5tSpU0RERCR5rVmzZukfkBnTOZ6+1q9fz/Tp02nfvj3e3t7Ex8dz8OBBZs2ahYODAy1btjR1iJJBKLkTSSNbt25lxIgRdO7cmddee421a9dib29Pnz59yJ8/v6nDM0ubNm1i1KhRxMXFJXnNwsJCyV0q0zmevlauXMmwYcPo2LGjoez111+nYMGCfP7550ruxCCTqQMQMVd37twx3HTUw8OD48ePkz17dgYOHMj27dtNHJ15WrhwIW3atOHAgQMEBAQY/dOVhKlP53j6unbtGjVr1kxSXqNGDYKDg00QkWRUSu5E0kjWrFl59OgRAAUKFODcuXNAwr2oQkJCTBma2QoJCaFbt25aZJ5OdI6nr7x583Ly5Mkk5SdOnCBXrlwmiEgyKiV3ImmkcuXKzJgxg5CQEMqVK8fOnTsJDQ1l165dRreOkNRTokQJgoKCTB3GK0PnePpq27Yt48aNY+3atYYR6TVr1jB+/HjdV1CM6GpZkTRy/fp1evfuTbNmzWjfvj1t27Y1TA1++OGHvP322yaO0DwcPHjQ8P+jR4+yatUq+vXrR8GCBbG0tDSq6+3tnd7hmTWd4+krLi6OyZMns27dOmJjY4mPj8fKyoq2bdsyYsQIMmXSeI0kUHInkkYuXbpEgQIFiIyMxNbWlvDwcPbu3UuePHkoW7asqcMzG56enlhYWPCsjzLdwT/16Rw3jbCwMMMIdeHChXFwcDBxRJLRKLkTSSM1atRgwYIF+iOXxq5evfrcdfUIstSlczz9hYWFsX37dgIDA8mUKROlSpWifv362Nramjo0yUA0hiuSRqytrbGy0t2G0pqbm5vh3/z588mWLZtRmZubG1myZOHjjz82dahmR+d4+jp//jz169dn8uTJHDlyhP379/PRRx/RpEkTbty4YerwJAPRb6VIGnnrrbfo0aMHTZs2pWDBgtjZ2Rm9rnuupY7Dhw9z+fJlIOHZsqVKlUoyTXX+/Hn27dtnivDMms7x9DVx4kRKlCjBjBkzyJYtG5DwJJYPPviAiRMnMn/+fBNHKBmFpmVF0oinp+dTX9P6r9Rz5MgR2rdvD/DUtXf29vZ069aNvn37pnd4Zk3nePry8vLiq6++olixYkblAQEBtG/fniNHjpgoMsloNHInkkYCAgJMHcIroUKFCoa+9vT0ZO/evbrnVzrROZ6+cuXKxY0bN5Ikd2FhYWTPnt00QUmGpJE7ERGRl8B3333H1KlT+fDDD/Hx8cHKyooTJ04wbtw4WrduzRtvvGGomzdvXhNGKqam5E5EzEZkZCRffvklgYGBxMbGGsqjoqI4efIku3btMmF0Iv/N49PgFhYWhv/Hx8cbfk78v6bEX22alhURszFx4kQ2b95MyZIlOXHiBF5eXgQHB3Pnzh26dOli6vBE/pNVq1aZOgR5SSi5ExGz4e/vz+TJk2nUqBGvv/46EyZMIH/+/AwcOJDo6GhThyfyn/j4+Jg6BHlJ6D53Imlk/vz5hIeHJykPCwvTPdfSyP3796lQoQIARYsW5fTp01hbW/Puu+/yww8/mDi6V0NoaKipQxB55WnkTiQVnT9/3vDHbcGCBXh6ehruR5UoMDCQr776ipEjR5oiRLPm5OTEnTt3yJs3L+7u7gQGBgKQI0cObt++beLozM/9+/eZPn06HTt2pGjRovTo0YPff/8dd3d3li5dSv78+U0dosgrScmdSCq6fPkyvXr1Mixuftp91Vq0aJGeYb0yatasybhx45g8eTIVK1Zk0qRJvP7662zfvh0XFxdTh2d2Jk+ezKFDh+jSpQvfffcdhw4dYtq0aWzfvp1p06Yxb948U4co8krS1bIiqezatWvExcVRt25dNmzYgJOTk+E1CwsL7O3tdU+qNHL//n0+/PBDqlevTvv27XnnnXf45ZdfsLKyYurUqTRs2NDUIZqVatWqsWDBAry8vPjwww+5d+8eixcvJjAwkA4dOnDw4EFThyjyStLInUgqS7y/lL+/P3nz5jW6ZYGkraxZs7Jw4ULDz0uXLuXMmTPkypVLCXUaePToEa6urgD8+uuv9OzZEwA7OzujW9FI6nja48UsLCywtrbGxcWFmjVr6lwXJXciacXV1ZUtW7Zw5MgRoqOjkzwWa/LkySaKzHx99dVXtG7d2vCzhYUFJUuW5OjRo7z99tvs2LHDhNGZnyJFivDjjz/i6urKrVu3qFmzJpDwPhQpUsTE0ZmfgwcPcvDgQaytrSlUqBAAwcHBRERE4Orqyr1797C1tWXVqlVJnmIhrxYldyJpZNKkSaxZswZPT88kD7KXtDF+/HisrKxo3rw5kHBT41mzZvHFF19QsWJFE0dnfvr370+/fv2Ijo6mUaNGuLu7M3nyZNasWcOCBQtMHZ7ZKVu2LHFxccyZM4ecOXMCcPfuXQYPHkz58uXp1asXY8aMYcaMGSxZssTE0Yopac2dSBqpXLkyH374IW+99ZapQ3ll7Ny5k6FDhzJ+/Hjy5cvHiBEjuHfvHkOGDKFVq1amDs8s3b17l5CQEMPTE44fP06WLFk0cpcGqlatyvLlyylRooRReUBAAF27dmXfvn2cO3eOdu3aab3jK04jdyJpJCoqCm9vb1OH8UqpX78+VlZWfPDBB0RHR/PGG28watQocuXKZerQzFaOHDnIkSOH4eeyZcuaMBrzFhMTk+zNuCMjI4mIiADAxsaGuLi49A5NMhgldyJppEaNGvz000906NDB1KG8UurWrcvcuXMZMGAAb7zxhhK7VObn5/fcFwn5+/uncTSvFl9fX8aNG8esWbMoWLAgABcuXGDixIn4+voSGxvLunXr8PDwMHGkYmqalhVJI8uXL2fu3Ln4+vpSpEgRrK2tjV5/2j3w5MV4enomm2w8/jD1RHqY+n83b968507udI6nrtDQUN59911OnjxJ1qxZiY+P58GDB5QrV4558+Zx6tQpBg4cyJIlS/SosleckjuRNOLn5/fU1ywsLDSqkUo2bdr03MmG1j/Kyy4+Pp79+/dz5swZLC0t8fT0NCRyd+/excrKCkdHRxNHKaam5E5EzMqDBw+4e/cuBQoUAGD37t34+Pjo3l+pZPPmzc9dt1mzZmkWh4g8nZI7kTR28OBBzp8/T6NGjbhx4wbu7u5YWWm5a1o4deoU3bp1o3nz5gwbNgxIGEGNiopixYoVuvdXKki8KvZZLCwsNA2eyoKCghg/frzh3plPUn9LIiV3ImkkLCyM7t27c+zYMSwsLNi9ezcff/wxly5dYsWKFeTJk8fUIZqdTp06kS9fPsaNG4eNjQ2QcIXh6NGjCQkJYfny5SaOUOTf69SpE3fu3KFt27bJTr1q2YEkUnInkkbGjx/P6dOnmT59Ok2aNGHLli1ERUUxePBgChcuzMyZM00dotnx8vJiy5Yt5M+f36j8woULtGzZksOHD5soMpH/rmzZsqxbt45SpUqZOhTJ4DQ3JJJGfvjhB2bOnGmUaBQpUoQxY8bQp08fE0ZmvrJkycLly5eTJHc3b940jOTJf1OiRAn27t1Lzpw5n3qlciJNE6auHDlyJLnqXiQ5Su5E0khoaCjOzs5JyrNmzcqjR49MEJH5q1evHuPGjWPs2LGGm+meOHGC8ePH8/rrr5s4OvMwadIkw5TgpEmTnvtKZfnvOnbsyKxZs5gxY4YeaSgpUnInkkbKlCnDjh07eOedd4zK16xZQ8mSJU0UlXn74IMPuHTpEl27djVKOl5//XWGDh1qwsjMx+Pruho1avTUEdHff/89vUJ6Zfz2228cOnQIHx8fcubMmaTvdXslSaTkTiSNDBo0iG7dunH8+HFiYmJYtGgR58+f59SpUyxbtszU4Zkle3t7Pv30U4KCgvjzzz+xsrKiSJEiuLu7mzo0s9S7d28WL15sNFX46NEjpkyZwoYNGzQtm8oqVqxIxYoVTR2GvAR0QYVIGgoICGD58uWcPn2auLg4ihUrRrdu3ShXrpypQ3vl3LhxAxcXF1OHYVbq169PgQIFWLBgAdbW1vz222+MGjWKhw8fMnToUFq0aGHqEEVeSUruRMRsXL58malTpxIYGEhsbCyQcEf/qKgoQkNDOX36tIkjNC+3bt2ia9euuLm54ezszNdff02DBg0YOXIkOXPmNHV4ZmH+/Pl0796dzJkzM3/+/KfWs7Cw0IVaYqDkTiQVDR8+nJEjR+Lg4MDw4cNTrDt58uR0iurV0bNnTy5evEj9+vVZsWIF3bp148KFC3z33XeMHz+e1q1bmzpEsxMaGkrXrl35888/mTt3LnXr1jV1SGbFz8+PjRs3kiNHDj3SUJ6b1tyJpKIrV64QFxdn+L+kryNHjrBw4UIqV67ML7/8Qt26dSlbtiyzZ8/mp59+UnKXCpJ7/FizZs2YPXs2GzduJCwszKhc/ps9e/Yk+3+RlGjkTsQEbt26lextUuS/KVOmDLt378bV1ZWBAwdSrVo1WrVqxYULF+jUqRN79+41dYgvPT1+zHR++uknXnvttSTlly9fZsSIEXzxxRcmiEoyIo3ciaSREiVK8Ouvv+Lk5GRUfuXKFRo3bszRo0dNFJn5cnNzIzAwEFdXVwoVKmRILuLi4nj48KGJozMPAQEBpg7hldWvXz8WLlyIr6+voWzVqlXMnj1bFwuJESV3Iqno66+/ZsuWLUDCQv4+ffokuaP8zZs3yZo1qynCM3tvvfUWQ4cOZdq0adSqVYvOnTuTN29efv31Vzw8PEwdntkLDQ3lwIEDlC5dmnz58pk6HLMzaNAg+vbty6JFi8ibNy/Dhw/n+PHjdO/eXRdTiBEldyKpqG7dukbPL3VxccHOzs6oTvHixbUWKY2888472NraEh8fT9myZXnvvfdYtGgRrq6uTJs2zdThmZ3AwED69evHxIkT8fDwoEmTJty+fRsbGxuWLl1KlSpVTB2iWenSpQvW1tb07t0bCwsLihUrxqZNmyhevLipQ5MMRmvuRNLI41fOipij7t27Y2lpyeTJk9m1axdz587l22+/Zf369ezbt4/169ebOkSztGHDBsaNG8enn35K1apVTR2OZEBK7kTSUHx8PL/88guBgYFYWVlRrFgxqlSpgqWlpalDM1v79+/n5MmTRERE8OTHW9++fU0UlXmqUKECGzZsoEiRIvTu3ZusWbMydepULl++TOPGjfnjjz9MHeJLz8/PL9nn94aEhGBpaUmuXLkMZboViiTStKxIGrl37x7du3fn1KlTODo6Eh8fT1hYGKVKlWLFihVad5cGli5dyqxZs3B0dDQ83D6RhYWFkrtUlilTJmxsbIiJieHAgQOMHj0agIcPHyZZjiD/zltvvZVscieSEo3ciaSRxMXOM2fONNw+IiAggCFDhlChQgXGjRtn4gjNT82aNWnXrh29e/c2dSivhB49euDi4oKTkxPLly/n559/Jjo6mtGjR5MpUyYWL15s6hBFXklK7kTSSJUqVZg7dy4+Pj5G5fv372fQoEH8+uuvJorMfJUtW5bt27frSs10EhwczMCBA7l8+TIDBw6kffv2TJgwgR9//JFPP/2UwoULmzpEsxMQEEBgYKDhZumJj9c7ceIEEydONHF0klFoWlYkjcTExBith0mUK1cuo7v4S+qpWLEiR48eVXKXTgoWLMimTZuMyvr06cOIESO0rjQNrFixgqlTpwIJywwSx2YsLCyoVKmSKUOTDEbJnUgaKVWqFOvWrWPkyJFG5evWraNEiRImisr8PP44rDJlyjB27Fj+/PNPChYsmCTB0C1o0t6TN+2W1LNmzRp69uxJ3759qV27Nt988w337t3jgw8+oE6dOqYOTzIQTcuKpJGjR4/SuXNnPD09qVChAgCHDx8mICCAzz77TPcASyV6HJa8KkqXLs327dspUKAA3bp1o3379tStW5e9e/cyZcoUtm3bZuoQJYPQyJ1IGvHy8mLNmjUsX76cvXv3Eh8fj4eHB2PGjKFs2bKmDs9s6HFY8qqwt7cnNjYWgAIFCnDu3Dnq1q1LkSJFuHr1qomjk4xEyZ1IGipbtixz5swxdRgiYgYqVKjA0qVLGTNmDCVLluTrr7/mnXfe4fDhw2TJksXU4UkGomlZkTQyf/78FF/XPddE5EUEBgbSrVs3unTpQrt27WjcuDH3798nPDyc7t27M2jQIFOHKBmEkjuRNOLn52f0c2xsLHfu3MHKyooKFSqwfPlyE0Umkjo8PT2feoNda2trXFxcaNq0Ke+9955uxJtKIiIiePToEU5OTty+fZtt27bh4uJC/fr1TR2aZCCalhVJI3v27ElSFhYWxogRIwwXWIi8zEaMGMHMmTNp166d4VYcR48eZc2aNbRr145s2bKxatUqbGxs6Nmzp4mjNQ92dnaEhobyyy+/4O3tTePGjcmZM6epw5IM5v/t3X9UzfcfB/Bnvy6baiZnmCgV1eroB8qPma0z2ZHOSVhk0Qqb7aTiSJzV0Pi6Ue34ceZH+mVJG05nhJzJQhoVOZXqqqUihzORiujqfv9w1tmVr/muPr1v1/Px1+3l88fzj/C6r8/7Byd3RD2ssrISAQEBOHPmjOgoRF3i4+MDb29v+Pj4qNUPHTqEgwcPIi0tDadOnUJ0dDSysrIEpdQeT548wapVq3D8+HHo6uoiKysLcrkcLS0t2LZtGwwNDUVHJA2hKzoA0eumqakJTU1NomMQdVlZWdkLj/QZO3YsSktLAQDvvfcebt261dPRtNIPP/yA8vJyJCcno0+fPgAAPz8/1NTUYMuWLYLTkSbha1kiibxoQ0VLSwuOHTsGV1dXAYmIupepqSlOnz4Nf39/tfrp06cxePBgAEBtbS0PNu4mmZmZWLt2rdq/H66urtiwYQPCwsKwdu1aceFIo7C5I5LI89cyAc8WmU+YMAGhoaECEhF1r6VLlyI8PBzFxcVwcnJCe3s7rly5ghMnTmD9+vWorq7G6tWr4e7uLjqqVrh9+zaGDx/eqT5kyBA0NjYKSESais0dkURetKGCSJt4enrC0NAQCQkJiI2Nhb6+PqytrbFz505MnjwZ+fn58PT05LE/3cTS0hJ5eXmYM2eOWj0zMxNWVlaCUpEm4oYKIiKiXuD06dMIDQ2Fj48P0tLSsGjRIlRXVyMrKwtxcXGYNm2a6IikIdjcEUnkZWeAPY93nlJvVVBQgEuXLqGtrQ3P/3fCiV33O3PmDHbt2oWrV6+ivb0dI0eOxOLFi9nYkRo2d0QSSU9PR3R0NLy8vODi4gKZTIbi4mIkJydjzpw5sLa27nh25syZApMS/Ts7duzAtm3bYGxs3OkYDh0dHZw6dUpQMqLXG5s7IonMnz8fHh4e8PX1VasfPXoUSUlJOHjwoKBkRN3j/fffh5+fH7744gvRUV4bRUVF2LdvHxQKBfT09GBnZwd/f3+MHDlSdDTSIDznjkgiJSUlmDhxYqe6nZ0dFAqFgERE3aupqQkzZswQHeO1kZ2dDV9fX9y4cQOTJk3CuHHjUFFRAW9vbxQUFIiORxqEu2WJJGJmZoajR492Wnf0008/8Vs2aQVnZ2dcvnwZQ4cOFR3ltRAXF4fAwECsWLFCrS6Xy7F582akp6cLSkaahs0dkUSWLVuGoKAg5OXlYfTo0Whvb8fly5dRUVGBvXv3io5H1GUzZsxAVFQUSkpKYGFhAZlMpvbnXl5eYoJpqZqaGsyaNatT3cfHB/v37xeQiDQV19wRSaigoAA//vgjKisrATy7iikgIAA2NjaCkxF13ct+j3V0dLgLvJv5+PjAy8sL8+bNU6tzHS89j80dERFRL5CamorY2Fh4e3vD1dUV+vr6HTvw586dq3aQMaemrzc2d0RERL3Aq078OTUlNndERPTKbG1tce7cOZiYmPzjQd1sMIjE4IYKIiJ6ZRs3boSRkVHH51e9hYW6X0NDAy5evAh7e3uYmpqKjkMahJM7IiKiXkChUCAoKAjfffcdrK2tMX36dPz555+QyWTYvXs3xo8fLzoiaQhO7oi6UX5+/is/O27cOAmTEElj+/btr/ws75btXnK5HGZmZrCwsMDRo0ehVCqRk5ODAwcO4Pvvv8eBAwdERyQNwckdUTf6aw3SP/214oJn6q3c3NzUfr516xYMDAwwbNgw6Ovro7a2Fm1tbbC3t2ez0c2cnZ3x888/w9LSEkuXLoWxsTHkcjnq6urg6emJoqIi0RFJQ3ByR9SNeFE6abvs7OyOz0lJSfjtt98QExMDExMTAMCDBw8QFhaGUaNGiYqotXR1dSGTyaBUKnHx4kVEREQAAFpaWtC3b1/B6UiTcHJHJMDjx4/Rp08f0TGIumTixIlISEjodESHQqGAn58fLly4ICiZdlq0aBEGDx6MAQMGICEhAWfOnEFbWxsiIiKgq6uLnTt3io5IGoKTOyKJ3Lt3Dzt37oRCocDTp08BACqVCm1tbaisrORF39TrtbW14eHDh53qd+/e5S5aCURERCA0NBR1dXVYs2YNBgwYgKioKFRVVWHPnj2i45EG4eSOSCIhISHIy8vDpEmTcOLECXh4eKCqqgpXr17F8uXLsWTJEtERibpk1apVKCkpQWRkJOzt7aFSqVBYWIioqChMmTKl47UhSaehoQFvvfUW9PT0REchDcLmjkgirq6ukMvl+PDDD+Hh4YGYmBjY2NggIiICjx8/RnR0tOiIRF3S3NyM4OBg5ObmdkzqVCoVPvnkE0RHR0MmkwlOSPR64mtZIom0tLTA2toaAGBhYYHy8nLY2Njgs88+49SOtIKhoSH27t2L6upqKBQK6OjowNbWFsOGDRMdjei1pis6AJG2GjRoEG7evAkAMDc3R0VFBQDgjTfeQGNjo8hoRN1GpVKhrq4OdXV1qK+vR21tbccaUyISg5M7Iom4u7tj9erV2LRpEyZOnIjQ0FA4ODjg119/hZmZmeh4RF12//59BAYGorS0FEZGRlCpVGhuboadnR0SExNhbGwsOiLRa4mTOyKJhIaGYsqUKaivr8eECRPg7u6OkJAQ5OTkIDw8XHQ8oi6Ty+VobW1FRkYG8vPzUVBQgIyMDDx58gQxMTGi42mljIwMHD9+vOPn4OBgHDlyRGAi0kTcUEEksba2NhgYGAAA6uvr8c4770Bfn0Nz6v3Gjx+PrVu3wsXFRa1+4cIFLF++HLm5uYKSaaeUlBRs2bIFERERmDNnDgDgP//5D9LT07FmzRp8+umnghOSpuDkjkgiDQ0NWLBggdpdnLNnz8aSJUu45o60glKpxMCBAzvVBw4ciObmZgGJtNu+ffuwadOmjsYOAFavXo2oqCgkJCQITEaahs0dkUQ2bNiAR48ewcPDo6O2Z88eNDU1QS6XC0xG1D3s7OyQlpbWqZ6WlgZbW1sBibTbnTt3YG9v36nu6OiI+vp6AYlIU/HdEJFEzp07h+TkZLU7Nu3s7PDtt9/yKBTSCiEhIViwYAGKiorg7OwMACgsLER5eTni4+MFp9M+5ubmyM7Ohr+/v1o9JycHpqamYkKRRmJzRySRp0+f4kVLWg0MDPDo0SMBiYi6l5OTE1JTU5GYmIhz585BpVLB2toakZGRGD16tOh4WicwMBDh4eEoLS2Fg4MDAKC4uBiZmZmIiooSnI40CTdUEElk6dKlUCqViIuLg6GhIYBnJ/qHhYVBqVRi9+7dghMSdV1TUxPu3buH4cOHAwBOnjwJFxcX9O/fX2wwLXXs2DGkpKSgoqICBgYGsLS0xJIlS/DRRx+JjkYahM0dkURqa2sxf/58tLS0wNzcHABw/fp19O/fH/Hx8bCwsBAbkKiLSktLERAQAG9vb6xatQoA4ObmhidPniAhIUFtSQIR9Rw2d0QSampqQmZmJq5duwZ9fX1YWVnB09MTffv2FR2NqMv8/PxgamqKdevWddwjq1QqERERgdu3b3MHZzfIyMjA9OnTIZPJkJGR8dJnvby8eiQTaT42d0RE9K84OTnhl19+6XSXbHV1NWbPno3CwkJBybSHjY0NcnNzYWJiAhsbm//5nI6ODsrKynowGWkybqgg6kZ/nWtnbGyMBQsWvPTZlJSUHkpFJI1+/fqhrq6uU3N3586djkkedU15efkLPxO9DJs7om40dOhQ6Oo+Oz7y3XffhY6OjuBERNKZNm0a1q1bh7Vr13bsji0uLsb69esxdepUwemIXl98LUtERP/Kw4cPERwcjLNnz6p9kZk6dSo2btzYsUuc/j03N7dX/pJ46tQpidNQb8HJHZFEXrb4WSaTYdCgQXB0dISenl7PhSLqRm+++Sb27NmD6upqKBQK6Ovrw9LSsmN3OHXdzJkz+QaA/m+c3BFJxN3dHTdu3EB7ezuMjIwAPNs9q6Oj03G48YgRI5CYmIjBgweLjEpERFqEzR2RRJKSknDo0CFs2bIF1tbWAICqqiqsXLkSs2fPxscff4xvvvkGRkZGiImJEZyWiHqDq1evIikpCdeuXYNMJsOoUaOwePHijkOkiQA2d0SSmTJlCmJjYzFmzBi1elFREYKDg5GTk4OrV68iICAAv//+u6CURNRbnDhxAqGhoXB0dISDgwOePn2KS5cu4dq1a9i9ezfGjx8vOiJpCK65I5LIgwcPOl7H/l3fvn3R2NgIADA2Nsbjx497OhoR9UJbt27Fl19+ieDgYLX6xo0bER0djcOHDwtKRppGV3QAIm01duxYbN68GU1NTR21Bw8eICYmBk5OTgCe3cM5YsQIURGJqBepq6t74S0U8+bNQ2VlZc8HIo3FyR2RRCIjI7Fw4UJ88MEHGDFiBFQqFa5fv463334b8fHxyM3NRUxMDOLi4kRHJaJewM7ODhcvXoSZmZla/cqVK7CyshKUijQR19wRSai1tRWZmZkoKyuDnp4ebGxs4OHhAZlMhps3b6K1tRWWlpaiYxKRhvr7kUpVVVVISUmBr68vxowZA11dXZSWliIxMRFff/01AgMDxQUljcLmjkhizc3N+OOPP2BgYIBhw4bxYFciemUvu0/273i3LP0dmzsiibS3t0Mul2P//v1QKpUAAAMDA/j4+GDNmjU8mJSIiCTBNXdEEtm1axcOHTqElStXwsXFBe3t7cjPz8eOHTswaNAgLFq0SHREIiLSQpzcEUnEzc0NoaGh8PT0VKsfOXIE27Ztw8mTJwUlI6Le6J/umeXdsvQXTu6IJHL37l04ODh0qjs4OODWrVsCEhFRb/b8PbNKpRLXr1/H2bNnsWzZMoHJSNOwuSOSiLm5Oc6fP9/pWqDc3FwMHTpUUCoi6q2CgoJeWD9w4ADOnz+PhQsX9nAi0lRs7ogk8vnnnyMyMhJ1dXVwdnYGABQWFiI1NRVhYWGC0xGRtpg8eTLkcrnoGKRB2NwRScTLywv3799HfHw89u7dCwAYOHAgQkJCMH/+fMHpiEhbZGVloV+/fqJjkAbhhgqiHtDQ0ACVSgUTExPRUYiol3rRhoqWlhY0NjYiKCgIX331laBkpGk4uSPqAQMGDOj4nJ+fj/DwcO5sI6L/y/MbKoBnZ2c6OjrC1dVVUCrSRGzuiHpYa2sr6uvrRccgol7mf22oIHoemzsiIqJeoqioCPv27YNCoYCenh7s7Ozg7++PkSNHio5GGkRXdAAiIiL6Z9nZ2fD19cWNGzcwadIkjBs3DhUVFfD29kZBQYHoeKRBOLkjIiLqBeLi4hAYGIgVK1ao1eVyOTZv3oz09HRByUjTsLkj6kbbt2//x2dqamp6IAkRaZuamhrMmjWrU93Hxwf79+8XkIg0FZs7om50+PDhV3puyJAhEichIm1ja2uLvLw8mJubq9VLSkq45o7U8Jw7IiKiXiA1NRWxsbHw9vaGq6sr9PX1UVxcjOTkZMydOxdWVlYdz3p5eYkLSsKxuSMiIuoFbGxsXuk5HR0dlJWVSZyGNBmbOyIiIiItwqNQiIiIiLQImzsiIiIiLcLmjoiIiEiLsLkjIiIi0iJs7oiIiIi0CJs7IiIiIi3C5o6IiIhIi7C5IyIiItIi/wXCEit7P8scVgAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "corr = data[['Logical quotient rating', 'hackathons', 'coding skills rating', 'public speaking points']].corr() \n",
    "sns.heatmap(corr,square=True,annot=True,linewidth = .2,center=2,cmap=Palette)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     Logical quotient rating hackathons coding skills rating  \\\n",
      "0                          5          0                    6   \n",
      "1                          7          6                    4   \n",
      "2                          2          3                    9   \n",
      "3                          2          6                    3   \n",
      "4                          2          0                    3   \n",
      "...                      ...        ...                  ...   \n",
      "6896                       7          5                    6   \n",
      "6897                       6          5                    1   \n",
      "6898                       5          1                    6   \n",
      "6899                       1          6                    4   \n",
      "6900                       5          6                    2   \n",
      "\n",
      "     public speaking points  \n",
      "0                         2  \n",
      "1                         3  \n",
      "2                         1  \n",
      "3                         5  \n",
      "4                         4  \n",
      "...                     ...  \n",
      "6896                      2  \n",
      "6897                      8  \n",
      "6898                      7  \n",
      "6899                      6  \n",
      "6900                      5  \n",
      "\n",
      "[6901 rows x 4 columns]\n"
     ]
    }
   ],
   "source": [
    "print(data.T.head(4).T)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['self-learning capability?', 'Extra-courses did', 'certifications', 'workshops', 'reading and writing skills', 'memory capability score', 'Interested subjects', 'interested career area ', 'Type of company want to settle in?', 'Taken inputs from seniors or elders', 'Interested Type of Books', 'Management or Technical', 'hard/smart worker', 'worked in teams ever?', 'Introvert', 'Suggested Job Role']\n",
      "     self-learning capability? Extra-courses did        certifications  \\\n",
      "0                          yes                no  information security   \n",
      "1                           no               yes     shell programming   \n",
      "2                           no               yes  information security   \n",
      "3                           no               yes         r programming   \n",
      "4                          yes                no         distro making   \n",
      "...                        ...               ...                   ...   \n",
      "6896                       yes                no     shell programming   \n",
      "6897                        no                no      machine learning   \n",
      "6898                       yes                no         distro making   \n",
      "6899                        no                no       app development   \n",
      "6900                        no               yes  information security   \n",
      "\n",
      "              workshops reading and writing skills memory capability score  \\\n",
      "0               testing                       poor                    poor   \n",
      "1               testing                  excellent                  medium   \n",
      "2               testing                  excellent                    poor   \n",
      "3     database security                  excellent                    poor   \n",
      "4      game development                  excellent                  medium   \n",
      "...                 ...                        ...                     ...   \n",
      "6896            hacking                       poor                    poor   \n",
      "6897            hacking                  excellent               excellent   \n",
      "6898       data science                       poor                    poor   \n",
      "6899   game development                       poor               excellent   \n",
      "6900  database security                  excellent                  medium   \n",
      "\n",
      "        Interested subjects   interested career area   \\\n",
      "0               programming                   testing   \n",
      "1                Management          system developer   \n",
      "2          data engineering  Business process analyst   \n",
      "3                  networks                   testing   \n",
      "4      Software Engineering          system developer   \n",
      "...                     ...                       ...   \n",
      "6896   Software Engineering                   testing   \n",
      "6897            programming                   testing   \n",
      "6898                    IOT          system developer   \n",
      "6899       data engineering                 developer   \n",
      "6900  Computer Architecture                  security   \n",
      "\n",
      "     Type of company want to settle in? Taken inputs from seniors or elders  \\\n",
      "0                                   BPA                                  no   \n",
      "1                        Cloud Services                                 yes   \n",
      "2                   product development                                 yes   \n",
      "3     Testing and Maintainance Services                                 yes   \n",
      "4                                   BPA                                  no   \n",
      "...                                 ...                                 ...   \n",
      "6896  Testing and Maintainance Services                                 yes   \n",
      "6897  Testing and Maintainance Services                                  no   \n",
      "6898                     Cloud Services                                 yes   \n",
      "6899                      SAaS services                                  no   \n",
      "6900                Sales and Marketing                                 yes   \n",
      "\n",
      "     Interested Type of Books Management or Technical hard/smart worker  \\\n",
      "0                      Series              Management      smart worker   \n",
      "1             Autobiographies               Technical       hard worker   \n",
      "2                      Travel               Technical      smart worker   \n",
      "3                       Guide              Management      smart worker   \n",
      "4                      Health               Technical       hard worker   \n",
      "...                       ...                     ...               ...   \n",
      "6896                  Trilogy              Management      smart worker   \n",
      "6897                  Science              Management       hard worker   \n",
      "6898                Self help               Technical       hard worker   \n",
      "6899                    Drama               Technical      smart worker   \n",
      "6900                    Drama              Management      smart worker   \n",
      "\n",
      "     worked in teams ever? Introvert      Suggested Job Role  \n",
      "0                      yes        no  Applications Developer  \n",
      "1                       no       yes  Applications Developer  \n",
      "2                       no        no  Applications Developer  \n",
      "3                      yes       yes  Applications Developer  \n",
      "4                      yes        no  Applications Developer  \n",
      "...                    ...       ...                     ...  \n",
      "6896                    no       yes           Web Developer  \n",
      "6897                    no        no           Web Developer  \n",
      "6898                   yes        no           Web Developer  \n",
      "6899                    no       yes           Web Developer  \n",
      "6900                   yes        no           Web Developer  \n",
      "\n",
      "[6901 rows x 16 columns]\n"
     ]
    }
   ],
   "source": [
    "# Now we understand there are 4 numerical values, 16 categorical values (nominal or binary[Yes/No])\n",
    "# Therefore, we need to split encoding as each of the question is different with answer option \n",
    "# For example, there are about 12 options (will be encoded 0-11) in suggested job role vs yes/no question that will be only (0/1)\n",
    "# Hence, we will proceed with Binary Encoding, then nominal encoding (Ordinal/ Label encoding)\n",
    "# Call Categorical variables for referring and columns name to copy and paste:\n",
    "print(categorical_cols.columns.tolist())\n",
    "print(categorical_cols)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "bicols = data[['self-learning capability?', 'Extra-courses did', 'Taken inputs from seniors or elders','worked in teams ever?', 'Introvert']]\n",
    "for i in bicols:\n",
    "    replace_nums = {i: {\"yes\": 1 ,\"no\": 0}}\n",
    "    data = data.replace(replace_nums )\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 6901 entries, 0 to 6900\n",
      "Data columns (total 20 columns):\n",
      " #   Column                               Non-Null Count  Dtype \n",
      "---  ------                               --------------  ----- \n",
      " 0   Logical quotient rating              6901 non-null   int64 \n",
      " 1   hackathons                           6901 non-null   int64 \n",
      " 2   coding skills rating                 6901 non-null   int64 \n",
      " 3   public speaking points               6901 non-null   int64 \n",
      " 4   self-learning capability?            6901 non-null   int64 \n",
      " 5   Extra-courses did                    6901 non-null   int64 \n",
      " 6   certifications                       6901 non-null   object\n",
      " 7   workshops                            6901 non-null   object\n",
      " 8   reading and writing skills           6901 non-null   int64 \n",
      " 9   memory capability score              6901 non-null   int64 \n",
      " 10  Interested subjects                  6901 non-null   object\n",
      " 11  interested career area               6901 non-null   object\n",
      " 12  Type of company want to settle in?   6901 non-null   object\n",
      " 13  Taken inputs from seniors or elders  6901 non-null   int64 \n",
      " 14  Interested Type of Books             6901 non-null   object\n",
      " 15  Management or Technical              6901 non-null   object\n",
      " 16  hard/smart worker                    6901 non-null   object\n",
      " 17  worked in teams ever?                6901 non-null   int64 \n",
      " 18  Introvert                            6901 non-null   int64 \n",
      " 19  Suggested Job Role                   6901 non-null   object\n",
      "dtypes: int64(11), object(9)\n",
      "memory usage: 1.1+ MB\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "orcols = data[[\"reading and writing skills\", \"memory capability score\"]]\n",
    "for i in orcols:\n",
    "    replace_nums = {i: {\"poor\": 0, \"medium\": 1, \"excellent\": 2}}\n",
    "    data = data.replace(replace_nums)\n",
    "\n",
    "print(data.info())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Logical quotient rating</th>\n",
       "      <th>hackathons</th>\n",
       "      <th>coding skills rating</th>\n",
       "      <th>public speaking points</th>\n",
       "      <th>self-learning capability?</th>\n",
       "      <th>Extra-courses did</th>\n",
       "      <th>certifications</th>\n",
       "      <th>workshops</th>\n",
       "      <th>reading and writing skills</th>\n",
       "      <th>memory capability score</th>\n",
       "      <th>...</th>\n",
       "      <th>Type of company want to settle in?</th>\n",
       "      <th>Taken inputs from seniors or elders</th>\n",
       "      <th>Interested Type of Books</th>\n",
       "      <th>worked in teams ever?</th>\n",
       "      <th>Introvert</th>\n",
       "      <th>Suggested Job Role</th>\n",
       "      <th>Management or Technical_Management</th>\n",
       "      <th>Management or Technical_Technical</th>\n",
       "      <th>hard/smart worker_hard worker</th>\n",
       "      <th>hard/smart worker_smart worker</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>5</td>\n",
       "      <td>0</td>\n",
       "      <td>6</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "      <td>6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>28</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>Applications Developer</td>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>7</td>\n",
       "      <td>6</td>\n",
       "      <td>4</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>8</td>\n",
       "      <td>6</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>Applications Developer</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>9</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>4</td>\n",
       "      <td>6</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>9</td>\n",
       "      <td>1</td>\n",
       "      <td>29</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>Applications Developer</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>5</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>7</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>7</td>\n",
       "      <td>1</td>\n",
       "      <td>13</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>Applications Developer</td>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>Applications Developer</td>\n",
       "      <td>False</td>\n",
       "      <td>True</td>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 22 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   Logical quotient rating  hackathons  coding skills rating  \\\n",
       "0                        5           0                     6   \n",
       "1                        7           6                     4   \n",
       "2                        2           3                     9   \n",
       "3                        2           6                     3   \n",
       "4                        2           0                     3   \n",
       "\n",
       "   public speaking points  self-learning capability?  Extra-courses did  \\\n",
       "0                       2                          1                  0   \n",
       "1                       3                          0                  1   \n",
       "2                       1                          0                  1   \n",
       "3                       5                          0                  1   \n",
       "4                       4                          1                  0   \n",
       "\n",
       "   certifications  workshops  reading and writing skills  \\\n",
       "0               4          6                           0   \n",
       "1               8          6                           2   \n",
       "2               4          6                           2   \n",
       "3               7          2                           2   \n",
       "4               1          3                           2   \n",
       "\n",
       "   memory capability score  ...  Type of company want to settle in?  \\\n",
       "0                        0  ...                                   0   \n",
       "1                        1  ...                                   1   \n",
       "2                        0  ...                                   9   \n",
       "3                        0  ...                                   7   \n",
       "4                        1  ...                                   0   \n",
       "\n",
       "   Taken inputs from seniors or elders  Interested Type of Books  \\\n",
       "0                                    0                        28   \n",
       "1                                    1                         3   \n",
       "2                                    1                        29   \n",
       "3                                    1                        13   \n",
       "4                                    0                        14   \n",
       "\n",
       "   worked in teams ever?  Introvert      Suggested Job Role  \\\n",
       "0                      1          0  Applications Developer   \n",
       "1                      0          1  Applications Developer   \n",
       "2                      0          0  Applications Developer   \n",
       "3                      1          1  Applications Developer   \n",
       "4                      1          0  Applications Developer   \n",
       "\n",
       "   Management or Technical_Management Management or Technical_Technical  \\\n",
       "0                                True                             False   \n",
       "1                               False                              True   \n",
       "2                               False                              True   \n",
       "3                                True                             False   \n",
       "4                               False                              True   \n",
       "\n",
       "   hard/smart worker_hard worker  hard/smart worker_smart worker  \n",
       "0                          False                            True  \n",
       "1                           True                           False  \n",
       "2                          False                            True  \n",
       "3                          False                            True  \n",
       "4                           True                           False  \n",
       "\n",
       "[5 rows x 22 columns]"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.select_dtypes(include=\"object\").columns.tolist()\n",
    "nominalcols = ['certifications',\n",
    " 'workshops',\n",
    " 'Interested subjects',\n",
    " 'interested career area ',\n",
    " 'Type of company want to settle in?',\n",
    " 'Interested Type of Books']\n",
    "#Left with these nominal attributes\n",
    "data.select_dtypes(include=\"object\").head()\n",
    "for i in nominalcols:\n",
    "    data[i] = data[i].astype('category')\n",
    "    data[i] = data[i].cat.codes\n",
    "\n",
    "data = pd.get_dummies(data, columns = ['Management or Technical','hard/smart worker'])\n",
    "data.head()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "#done converting all to numerical left with the label attribute\n",
    "#try with building machine learning model\n",
    "dataset = data\n",
    "dataset.head()\n",
    "#Separate all independant variables and targeted variable column\n",
    "df_train_x = dataset.drop('Suggested Job Role', axis = 1)\n",
    "df_train_y = dataset['Suggested Job Role']\n",
    "#Therefore, we split the dataset into train and test dataset\n",
    "x_train, x_test, y_train, y_test = train_test_split(df_train_x,df_train_y,test_size=.20,random_state=42)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[ 8 14 10  6 15  4 11 16 11  9 13 15]\n",
      " [ 9 14 13  9 10  8 10  6  4  5  9  8]\n",
      " [ 8 11 14  9 13  9 10  8 11 12  8 10]\n",
      " [ 7  5  7  9 11  7  9  8 10  6 10 11]\n",
      " [12 13  6  7 18 11  8 11  9  8  9  9]\n",
      " [ 7 13  9  6 14 12  9 13  9  8  4  9]\n",
      " [ 4 10 14  9 15 13 10  9  6  8 11  7]\n",
      " [ 7 11 15 10 12 13  6 10 10 11  7  6]\n",
      " [ 5 11 11  5 23 12  9  3  7  9 12  7]\n",
      " [ 5  8  8  7 14 15  8 10 13  6  6 11]\n",
      " [10 16 11  4 14 16 10  5 14  8  5  6]\n",
      " [ 7  8 10  8 10 16 12 12  6  8  5  7]]\n",
      "\n",
      "0.8689355539464156\n"
     ]
    }
   ],
   "source": [
    "#Proceed with random forest classifier\n",
    "rf = RandomForestClassifier(random_state=10)\n",
    "rf.fit(x_train,y_train)\n",
    "rf_predict_y = rf.predict(x_test)\n",
    "rfc_cm = confusion_matrix(y_test,rf_predict_y)\n",
    "rfc_acc = accuracy_score(y_test,rf_predict_y)\n",
    "print(rfc_cm, end=\"\\n\\n\")\n",
    "print(rfc_acc*10)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "userdata = [['7','6','6','8','3','5','4', '4', '7', '3', '3', '6','8', \n",
    "                    '7','5','7','4','5','6','8','8']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['Software Engineer']\n",
      "Probabilities of all classes:  [[0.07 0.11 0.07 0.05 0.05 0.06 0.12 0.11 0.11 0.09 0.06 0.1 ]]\n",
      "Probability of Predicted class :  0.12\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Asus\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names\n",
      "  warnings.warn(\n",
      "c:\\Users\\Asus\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "ynewclass = rf.predict(userdata)\n",
    "ynew = rf.predict_proba(userdata)\n",
    "print(ynewclass)\n",
    "print(\"Probabilities of all classes: \", ynew)\n",
    "print(\"Probability of Predicted class : \", np.max(ynew))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle \n",
    "pickle.dump(rf, open('rfweights.pkl','rb'))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}