Spaces:
Sleeping
Sleeping
File size: 48,761 Bytes
f57f681 80a4a54 f57f681 9ce0e21 f57f681 f2b1867 f57f681 7d5594f f57f681 7d5594f f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 f2b1867 f57f681 1655566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
# -*- coding: utf-8 -*-
import streamlit as st
import requests
from openai import OpenAI
import google.generativeai as genai
import anthropic
import streamlit.components.v1 as components
import re
# from supabase import create_client # Keep commented if not using history/auth
import base64
import time
import json # For potentially structured Q&A
# ---------- Helper: Safe Rerun ----------
def safe_rerun():
"""Safely trigger a Streamlit rerun if the function exists."""
if hasattr(st, "experimental_rerun"):
st.experimental_rerun()
elif hasattr(st, "rerun"):
st.rerun()
else:
st.warning("Rerun function not available. Please update Streamlit.")
# ---------- Setup & API Client Initialization ----------
# (Keep your existing API key loading logic here - unchanged)
openai_client = None
genai_client = None
deepseek_api_key = None
claude_client = None
secrets_available = {"openai": False, "gemini": False, "deepseek": False, "claude": False}
secret_errors = []
# (Keep your existing API key loading and client initialization logic here)
# ... (Omitted for brevity, assume it's the same as before) ...
# OpenAI API Key
try:
openai_api_key = st.secrets.get("OPENAI_API_KEY")
if openai_api_key:
openai_client = OpenAI(api_key=openai_api_key)
secrets_available["openai"] = True
else:
secret_errors.append("Streamlit Secret `OPENAI_API_KEY` not found.")
except KeyError:
secret_errors.append("Streamlit Secret `OPENAI_API_KEY` not found.")
except Exception as e:
secret_errors.append(f"Error initializing OpenAI client: {e}")
# Gemini API Key (Google GenAI)
try:
gemini_api_key = st.secrets.get("GEMINI_API_KEY")
if gemini_api_key:
genai.configure(api_key=gemini_api_key)
genai_client = genai
secrets_available["gemini"] = True
else:
secret_errors.append("Streamlit Secret `GEMINI_API_KEY` not found.")
except KeyError:
secret_errors.append("Streamlit Secret `GEMINI_API_KEY` not found.")
except Exception as e:
secret_errors.append(f"Error initializing Google GenAI client: {e}")
# DeepSeek API Key
try:
deepseek_api_key = st.secrets.get("DEEPSEEK_API_KEY")
if deepseek_api_key:
secrets_available["deepseek"] = True
else:
secret_errors.append("Streamlit Secret `DEEPSEEK_API_KEY` not found.")
except KeyError:
secret_errors.append("Streamlit Secret `DEEPSEEK_API_KEY` not found.")
except Exception as e:
secret_errors.append(f"Error reading DeepSeek API key: {e}")
# CLAUDE API Key and Client Initialization
try:
claude_api_key = st.secrets.get("CLAUDE_API_KEY")
if claude_api_key:
claude_client = anthropic.Anthropic(api_key=claude_api_key)
secrets_available["claude"] = True
else:
secret_errors.append("Streamlit Secret `CLAUDE_API_KEY` not found.")
except KeyError:
secret_errors.append("Streamlit Secret `CLAUDE_API_KEY` not found.")
except Exception as e:
secret_errors.append(f"Error initializing Claude client: {e}")
any_secret_loaded = any(secrets_available.values())
# ---------- Model Configuration ----------
# (Keep your existing SUPPORTED_MODELS dictionary population logic here - unchanged)
# ... (Omitted for brevity, assume it's the same as before) ...
SUPPORTED_MODELS = {}
# OpenAI Models
if secrets_available["openai"] and openai_client:
SUPPORTED_MODELS.update({
"GPT-4o (OpenAI)": {"id": "gpt-4o", "provider": "openai", "client": openai_client},
"GPT-4o Mini (OpenAI)": {"id": "gpt-4o-mini", "provider": "openai", "client": openai_client},
"GPT-4 Turbo (OpenAI)": {"id": "gpt-4-turbo", "provider": "openai", "client": openai_client},
"GPT-4 (OpenAI)": {"id": "gpt-4", "provider": "openai", "client": openai_client},
"GPT-3.5 Turbo (OpenAI)": {"id": "gpt-3.5-turbo", "provider": "openai", "client": openai_client},
})
# Gemini Models
if secrets_available["gemini"] and genai_client:
SUPPORTED_MODELS.update({
"Gemini 1.5 Pro (Google)": {"id": "gemini-1.5-pro-latest", "provider": "gemini", "client": genai_client},
"Gemini 1.5 Flash (Google)": {"id": "gemini-1.5-flash-latest", "provider": "gemini", "client": genai_client},
"Gemini 1.0 Pro (Google)": {"id": "gemini-1.0-pro", "provider": "gemini", "client": genai_client},
})
# DeepSeek Models
if secrets_available["deepseek"] and deepseek_api_key:
SUPPORTED_MODELS.update({
"DeepSeek Chat": {"id": "deepseek-chat", "provider": "deepseek", "client": None},
"DeepSeek Coder": {"id": "deepseek-coder", "provider": "deepseek", "client": None},
})
# Claude Models
if secrets_available["claude"] and claude_client:
SUPPORTED_MODELS.update({
"Claude 3.5 Sonnet (Anthropic)": {"id": "claude-3-5-sonnet-20240620", "provider": "claude", "client": claude_client},
"Claude 3 Haiku (Anthropic)": {"id": "claude-3-haiku-20240307", "provider": "claude", "client": claude_client},
"Claude 3 Opus (Anthropic)": {"id": "claude-3-opus-20240229", "provider": "claude", "client": claude_client},
})
# Determine default model based on preference and availability
DEFAULT_MODEL_PREFERENCE = [
"GPT-4o Mini (OpenAI)",
"Gemini 1.5 Flash (Google)",
"Claude 3 Haiku (Anthropic)",
"DeepSeek Chat",
"GPT-3.5 Turbo (OpenAI)",
]
DEFAULT_MODEL = next((m for m in DEFAULT_MODEL_PREFERENCE if m in SUPPORTED_MODELS), None)
if not DEFAULT_MODEL and SUPPORTED_MODELS:
DEFAULT_MODEL = next(iter(SUPPORTED_MODELS)) # Fallback to the first available
# ---------- Helper Functions for Generation ----------
# (Keep your existing _generate_with_... provider functions here - unchanged)
# ... (Omitted for brevity, assume they are the same as before) ...
def _generate_with_openai_provider(client, model_id, prompt, max_tokens, system_message=None):
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
messages.append({"role": "user", "content": prompt})
try:
response = client.chat.completions.create(
model=model_id,
messages=messages,
temperature=0.6,
max_tokens=max_tokens
)
return response.choices[0].message.content
except Exception as e:
st.error(f"β OpenAI API Error ({model_id}): {e}")
return f"Error: OpenAI API call failed for {model_id}. Details: {e}"
def _generate_with_gemini_provider(client, model_id, prompt, max_tokens, system_message=None):
full_prompt = f"{system_message}\n\n{prompt}" if system_message else prompt
try:
model = client.GenerativeModel(
model_id,
safety_settings={
'HARM_CATEGORY_HARASSMENT': 'block_none',
'HARM_CATEGORY_HATE_SPEECH': 'block_none',
'HARM_CATEGORY_SEXUALLY_EXPLICIT': 'block_none',
'HARM_CATEGORY_DANGEROUS_CONTENT': 'block_none',
},
generation_config=client.types.GenerationConfig(temperature=0.7)
)
response = model.generate_content(full_prompt)
if response.parts:
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
elif hasattr(response, 'text') and response.text:
return response.text
elif response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason
st.warning(f"Gemini response blocked ({model_id}). Reason: {reason}")
return f"Error: Response blocked by API safety filters ({model_id}): {reason}"
else:
if response.candidates and response.candidates[0].finish_reason != "STOP":
st.warning(f"Gemini generation stopped unexpectedly ({model_id}). Reason: {response.candidates[0].finish_reason}")
return f"Error: Generation stopped unexpectedly ({model_id}). Reason: {response.candidates[0].finish_reason}"
else:
st.warning(f"Gemini returned an empty or unexpected response ({model_id}).")
return f"Error: Gemini returned an empty response for {model_id}."
except Exception as e:
st.error(f"β Gemini SDK error ({model_id}): {e}")
error_detail = getattr(e, 'message', str(e))
if "API key not valid" in error_detail:
return f"Error: Invalid Gemini API Key ({model_id}). Please check your Streamlit secrets."
return f"Error: Gemini SDK call failed for {model_id}. Details: {error_detail}"
def _generate_with_deepseek_provider(api_key, model_id, prompt, max_tokens, system_message=None):
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
messages.append({"role": "user", "content": prompt})
payload = {
"model": model_id,
"messages": messages,
"temperature": 0.6,
"max_tokens": max_tokens
}
try:
response = requests.post("https://api.deepseek.com/chat/completions", headers=headers, json=payload, timeout=90)
response.raise_for_status()
response_data = response.json()
if ("choices" in response_data and response_data["choices"] and
"message" in response_data["choices"][0] and
"content" in response_data["choices"][0]["message"]):
return response_data["choices"][0]["message"]["content"]
else:
st.warning(f"DeepSeek returned an unexpected response structure ({model_id}): {response_data}")
return f"Error: DeepSeek returned an unexpected structure for {model_id}."
except requests.exceptions.RequestException as e:
st.error(f"β DeepSeek API Request Error ({model_id}): {e}")
return f"Error: DeepSeek API request failed for {model_id}. Details: {e}"
except Exception as e:
st.error(f"β DeepSeek Error processing response ({model_id}): {e}")
return f"Error: DeepSeek processing failed for {model_id}. Details: {e}"
def _generate_with_claude_provider(client, model_id, prompt, max_tokens, system_message=None):
try:
message = client.messages.create(
model=model_id,
max_tokens=max_tokens,
system=system_message if system_message else None,
messages=[
{"role": "user", "content": prompt}
]
)
content = ""
if message.content:
content = "\n".join([block.text for block in message.content if hasattr(block, "text")])
return content
except Exception as e:
st.error(f"β Claude API Error ({model_id}): {e}")
if isinstance(e, anthropic.AuthenticationError):
return f"Error: Claude authentication failed ({model_id}). Check your API key."
return f"Error: Claude API call failed for {model_id}. Details: {e}"
def generate_with_selected_model(selected_model_name, prompt, max_tokens=2000, system_message=None):
"""Generates text using the chosen model, handling provider specifics."""
if not any_secret_loaded or not SUPPORTED_MODELS:
st.error("Error: No API keys loaded or models available. Configure secrets.")
return None
if selected_model_name not in SUPPORTED_MODELS:
st.error(f"Selected model '{selected_model_name}' is not configured or unavailable.")
original_choice = selected_model_name
selected_model_name = DEFAULT_MODEL
if not selected_model_name:
st.error("Fatal: Default model is also unavailable. Cannot proceed.")
return None
st.warning(f"Falling back from '{original_choice}' to default model: {DEFAULT_MODEL}")
st.session_state.model_choice = DEFAULT_MODEL # Update state on fallback
model_config = SUPPORTED_MODELS[selected_model_name]
provider = model_config["provider"]
model_id = model_config["id"]
client = model_config.get("client")
st.info(f"Generating with: **{selected_model_name}**")
start_time = time.time()
result = f"Error: Provider '{provider}' not implemented."
try:
if provider == "openai":
if not client: result = f"Error: OpenAI client not initialized for {selected_model_name}."
else: result = _generate_with_openai_provider(client, model_id, prompt, max_tokens, system_message)
elif provider == "gemini":
if not client: result = f"Error: Gemini client not initialized for {selected_model_name}."
else: result = _generate_with_gemini_provider(client, model_id, prompt, max_tokens, system_message)
elif provider == "deepseek":
if not deepseek_api_key: result = f"Error: DeepSeek API key not available for {selected_model_name}."
else: result = _generate_with_deepseek_provider(deepseek_api_key, model_id, prompt, max_tokens, system_message)
elif provider == "claude":
if not client: result = f"Error: Claude client not initialized for {selected_model_name}."
else: result = _generate_with_claude_provider(client, model_id, prompt, max_tokens, system_message)
except Exception as e:
st.error(f"β Unexpected error during generation with {selected_model_name}: {e}")
result = f"Error: Unexpected failure during {provider} generation. Details: {e}"
end_time = time.time()
duration = end_time - start_time
# st.caption(f"Generation took {duration:.2f} seconds.") # Less verbose
if isinstance(result, str) and result.startswith("Error:"):
# Error already logged by provider function
return None
return result
# --- Mermaid Diagram Helper ---
# (Keep your existing Mermaid helper functions here - unchanged)
# ... (Omitted for brevity, assume they are the same as before) ...
def is_valid_mermaid(code):
if not isinstance(code, str): return False
code_lower = code.strip().lower()
return bool(re.search(r"^\s*(%%.*?\n)*\s*(graph|flowchart|sequenceDiagram|classDiagram|stateDiagram|erDiagram|gantt|pie|gitGraph)", code_lower, re.MULTILINE))
def render_mermaid_diagram(mermaid_code, key):
if not isinstance(mermaid_code, str) or not mermaid_code.strip():
st.warning(f"Mermaid code is empty or invalid (Key: {key}).")
return
cleaned_code = re.sub(r"^```mermaid\s*\n?", "", mermaid_code, flags=re.IGNORECASE | re.MULTILINE).strip()
cleaned_code = re.sub(r"\n?```\s*$", "", cleaned_code).strip()
if not is_valid_mermaid(cleaned_code):
st.warning(f"β οΈ Mermaid diagram might not render correctly (Key: {key}). Check syntax. Displaying raw code.")
st.code(cleaned_code, language="mermaid")
return
container_id = f"mermaid-container-{key}"
mermaid_id = f"mermaid-{key}"
components.html(
f"""
<div id="{container_id}" style="background-color: white; padding: 10px; border-radius: 5px; overflow: auto;">
<pre class="mermaid" id="{mermaid_id}">
{cleaned_code}
</pre>
</div>
<script type="module">
try {{
const mermaid = (await import('https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs')).default;
mermaid.initialize({{ startOnLoad: false, theme: 'default' }});
const checkElement = setInterval(() => {{
const el = document.getElementById('{mermaid_id}');
if (el) {{
clearInterval(checkElement);
mermaid.run({{ nodes: [el] }});
}}
}}, 100);
setTimeout(() => clearInterval(checkElement), 5000);
}} catch (e) {{
console.error("Mermaid rendering error (Key: {key}):", e);
const container = document.getElementById('{container_id}');
if(container) container.innerHTML = "<p style='color:red;'>Error rendering Mermaid diagram. Check browser console.</p>";
}}
</script>
""",
height=500, scrolling=True,
)
# ---------- Initialize Session State (Provibe Workflow) ----------
# Core workflow steps
if 'current_step' not in st.session_state:
st.session_state.current_step = "input_idea" # input_idea -> refine_idea -> review_idea -> generate_docs -> display_docs
if 'processing' not in st.session_state: # General flag for disabling buttons
st.session_state.processing = False
# Input data
if 'initial_product_idea' not in st.session_state:
st.session_state.initial_product_idea = ""
if 'tech_stack_hint' not in st.session_state:
st.session_state.tech_stack_hint = ""
if 'model_choice' not in st.session_state:
st.session_state.model_choice = DEFAULT_MODEL
# Refinement stage data (NEW states added here)
if 'refinement_sub_step' not in st.session_state:
# Tracks progress within the 'refine_idea' step
# Possible values: 'generate_questions', 'await_answers', 'generate_final_refinement'
st.session_state.refinement_sub_step = 'generate_questions'
if 'clarifying_questions' not in st.session_state:
# Stores the list of questions generated by the AI
st.session_state.clarifying_questions = []
if 'user_answers' not in st.session_state:
# Stores user answers, dictionary mapping question index to answer string
st.session_state.user_answers = {}
# Output/Generated data
if 'refined_idea_content' not in st.session_state: # Stores the final AI-refined idea (after Q&A)
st.session_state.refined_idea_content = None
if 'confirmed_idea_content' not in st.session_state: # Stores the user-confirmed/edited idea
st.session_state.confirmed_idea_content = None
if 'selected_docs_to_generate' not in st.session_state: # Stores user selection for optional docs
st.session_state.selected_docs_to_generate = {}
if 'generated_docs' not in st.session_state: # Stores content of generated optional docs
st.session_state.generated_docs = {}
# ---------- Define Document Options (Align with Provibe Output) ----------
# (Keep your existing doc_options dictionary here - unchanged)
# ... (Omitted for brevity, assume it's the same as before, including PRD option) ...
doc_options = {
"prd": {
"label": "Product Requirements Document (PRD)",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your specific PRD generation prompt here ---
# Example: Write a comprehensive Product Requirements Document (PRD) based strictly on the following confirmed product description. Include sections like Introduction, Goals, Target Audience, Features (with details), User Stories, Design Considerations, Non-Functional Requirements, Open Issues, and Future Considerations. Ensure the PRD is detailed, clear, and actionable for a development team.
# --- End PRD Prompt ---
**Confirmed Product Description:**
---
{idea}
---
**Optional Preferences/Hints (Consider if relevant):**
{hint if hint else "None provided"}
""",
"system_message": "You are an expert Product Manager tasked with writing a detailed and professional PRD.",
"max_tokens": 3500, # Allow more tokens for PRD
"display_func": lambda content, key: st.markdown(content),
"download_filename": "prd.md",
"mime": "text/markdown",
},
"user_flow_text": {
"label": "User Flow (Text Description)",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your specific User Flow (Text) generation prompt here ---
# Example: Based on the product description below, outline the primary user flow step-by-step, from initial interaction to achieving the core goal. Describe each step clearly.
# --- End User Flow (Text) Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are a UX designer describing a key user journey.",
"max_tokens": 1000,
"display_func": lambda content, key: st.markdown(content),
"download_filename": "user_flow.md",
"mime": "text/markdown",
},
"user_flow_mermaid": {
"label": "User Flow Diagram (Mermaid)",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your specific User Flow (Mermaid) generation prompt here ---
# Example: Generate a Mermaid flowchart diagram representing the primary user flow for the product described below. Use standard flowchart syntax (graph TD, nodes, arrows). Ensure the diagram is clear and accurately reflects the user journey. Start the code block with ```mermaid and end it with ```. Do not include any other text before or after the code block.
# --- End User Flow (Mermaid) Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are an expert in creating Mermaid diagrams, specifically flowcharts for user journeys.",
"max_tokens": 1000,
"render_func": render_mermaid_diagram, # Special rendering
"code_language": "mermaid",
"download_filename": "user_flow_diagram.mmd",
"mime": "text/plain",
},
"frontend_arch": {
"label": "Frontend Architecture Notes",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your Frontend Architecture prompt here ---
# Example: Based on the product description and hints, suggest a suitable frontend architecture. Describe key components, recommended libraries/frameworks (consider hints like 'React Native'), state management approach, and potential component breakdown.
# --- End Frontend Architecture Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are a frontend architect designing a web/mobile application.",
"max_tokens": 1500,
"display_func": lambda content, key: st.markdown(content),
"download_filename": "frontend_architecture.md",
"mime": "text/markdown",
},
"backend_arch": {
"label": "Backend Architecture Notes",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your Backend Architecture prompt here ---
# Example: Based on the product description and hints, propose a backend architecture. Discuss potential API design (e.g., RESTful), choice of language/framework, database considerations (type, scaling), authentication/authorization strategy, and key microservices or modules if applicable.
# --- End Backend Architecture Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are a backend/systems architect designing the server-side logic and infrastructure.",
"max_tokens": 1500,
"display_func": lambda content, key: st.markdown(content),
"download_filename": "backend_architecture.md",
"mime": "text/markdown",
},
"system_arch_mermaid": {
"label": "System Architecture Diagram (Mermaid)",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your System Architecture (Mermaid) prompt here ---
# Example: Generate a Mermaid diagram illustrating the high-level system architecture for the product described below. Include key components like frontend client, backend API, database, authentication service, and any major third-party integrations mentioned or implied. Use appropriate Mermaid diagram syntax (e.g., graph TD or C4 model elements if suitable). Start the code block with ```mermaid and end it with ```. Do not include any other text before or after the code block.
# --- End System Architecture (Mermaid) Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You create system architecture diagrams using Mermaid syntax.",
"max_tokens": 1000,
"render_func": render_mermaid_diagram,
"code_language": "mermaid",
"download_filename": "system_architecture.mmd",
"mime": "text/plain",
},
"db_schema": {
"label": "Database Schema (SQL)",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your Database Schema (SQL) prompt here ---
# Example: Based on the product description, design a preliminary relational database schema. Provide SQL `CREATE TABLE` statements for the primary entities, including relevant columns, data types, primary keys, and foreign key relationships. Assume a PostgreSQL syntax unless hints suggest otherwise.
# --- End Database Schema (SQL) Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are a database administrator designing a schema.",
"max_tokens": 1500,
"display_func": lambda content, key: st.code(content, language='sql'), # Use code block for SQL
"code_language": "sql",
"download_filename": "database_schema.sql",
"mime": "text/x-sql",
},
"project_structure": {
"label": "Project Folder Structure",
"prompt_func": lambda idea, hint: f"""
# --- PROMPT: Insert your Project Structure prompt here ---
# Example: Suggest a logical file and folder structure for a project implementing the described product. Consider frontend, backend, shared components, tests, etc., based on the description and any tech stack hints. Present it as a simple tree structure.
# --- End Project Structure Prompt ---
**Product Description:**
---
{idea}
---
**Preferences/Hints:** {hint if hint else "None provided"}
""",
"system_message": "You are suggesting a clean project layout for a software development team.",
"max_tokens": 800,
"display_func": lambda content, key: st.code(content, language='bash'), # Use code block for structure
"code_language": "bash",
"download_filename": "project_structure.txt",
"mime": "text/plain",
},
}
# ---------- UI Layout (Provibe Workflow) ----------
st.set_page_config(layout="wide", page_title="Provibe Prompt Tester")
st.title("π§ͺ Provibe Prompt Tester (with Q&A Refinement)")
st.caption("Test and refine prompts for the Provibe document generation workflow, including interactive Q&A.")
# Display API Key Errors
if secret_errors:
st.error("API Key Configuration Issues:")
for error in secret_errors:
st.error(f"- {error}")
if not any_secret_loaded or not SUPPORTED_MODELS:
st.error("No API keys loaded or LLM models available. Configure secrets.")
st.stop()
# --- Workflow Steps ---
# ---------- Step 1: Input Initial Idea ----------
if st.session_state.current_step == "input_idea":
st.header("Step 1: Input Product Idea")
with st.form(key="idea_form"):
initial_idea_input = st.text_area(
"π‘ Enter the initial product idea:", height=150,
value=st.session_state.initial_product_idea,
help="The raw concept or description."
)
tech_hint_input = st.text_input(
"βοΈ Optional: Tech Stack Hints or Constraints",
placeholder="e.g., Use React, target mobile, needs offline support",
value=st.session_state.tech_stack_hint,
help="Any preferences to guide AI generation."
)
available_model_names = list(SUPPORTED_MODELS.keys())
default_model_key = st.session_state.get('model_choice', DEFAULT_MODEL)
default_index = available_model_names.index(default_model_key) if default_model_key in available_model_names else 0
model_choice_input = st.selectbox(
"π§ Choose AI model for all steps:",
options=available_model_names,
index=default_index,
key="model_select",
help="This model will be used for refinement and document generation."
)
submit_idea_button = st.form_submit_button(
label="β‘οΈ Start Interactive Refinement",
use_container_width=True,
disabled=st.session_state.processing
)
if submit_idea_button and initial_idea_input:
st.session_state.initial_product_idea = initial_idea_input
st.session_state.tech_stack_hint = tech_hint_input
st.session_state.model_choice = model_choice_input
# Reset states for the refinement process
st.session_state.clarifying_questions = []
st.session_state.user_answers = {}
st.session_state.refined_idea_content = None
st.session_state.confirmed_idea_content = None
st.session_state.generated_docs = {}
st.session_state.selected_docs_to_generate = {}
# Set the next step and the initial sub-step for refinement
st.session_state.current_step = "refine_idea"
st.session_state.refinement_sub_step = "generate_questions"
st.session_state.processing = True # Start processing
safe_rerun()
elif submit_idea_button:
st.warning("Please enter a product idea.")
# ---------- Step 2: Interactive Refinement (Q&A) ----------
if st.session_state.current_step == "refine_idea":
st.header("Step 2: Interactive Idea Refinement")
# --- Sub-Step 2a: Generate Clarifying Questions ---
if st.session_state.refinement_sub_step == "generate_questions":
st.info(f"Using **{st.session_state.model_choice}** to generate clarifying questions. Please wait.")
with st.spinner("AI is preparing questions..."):
# --- PROMPT: Define the Question Generation Prompt ---
question_gen_prompt = f"""
# --- PROMPT: Insert your Question Generation prompt here ---
# Example: Based on the initial product idea and hints below, generate 3-5 specific clarifying questions for the user. These questions should help elicit more detail about key features, target audience, technical constraints, or core functionality needed to write a better product specification. Output *only* the questions, each on a new line, starting with '- '. Do not include numbering or any other text.
# --- End Question Generation Prompt ---
**Initial Product Idea:**
---
{st.session_state.initial_product_idea}
---
**Optional Preferences/Hints Provided:**
{st.session_state.tech_stack_hint if st.session_state.tech_stack_hint else "None provided"}
"""
# --- End Question Generation Prompt ---
system_message_qa = "You are an AI assistant helping to clarify a product idea by asking relevant questions."
max_tokens_qa = 300
questions_raw = generate_with_selected_model(
st.session_state.model_choice,
question_gen_prompt,
max_tokens=max_tokens_qa,
system_message=system_message_qa
)
if questions_raw and not questions_raw.startswith("Error:"):
# Parse the questions (assuming one question per line, maybe starting with '- ')
st.session_state.clarifying_questions = [
q.strip('- ') for q in questions_raw.strip().split('\n') if q.strip() and q.strip() != '-'
]
if st.session_state.clarifying_questions:
st.session_state.user_answers = {i: "" for i in range(len(st.session_state.clarifying_questions))} # Initialize empty answers
st.session_state.refinement_sub_step = "await_answers"
else:
st.warning("AI generated questions but they seem empty or incorrectly formatted. Proceeding without Q&A.")
# Fallback: Skip Q&A and go directly to final refinement based only on initial idea
st.session_state.refinement_sub_step = "generate_final_refinement"
st.session_state.clarifying_questions = [] # Ensure it's empty
st.session_state.user_answers = {}
else:
st.error("Failed to generate clarifying questions. Check API errors or model selection.")
st.warning("Proceeding to refine based only on the initial idea (skipping Q&A).")
st.session_state.refinement_sub_step = "generate_final_refinement" # Skip Q&A on failure
st.session_state.clarifying_questions = [] # Ensure it's empty
st.session_state.user_answers = {}
st.session_state.processing = False # Done generating questions (or failed)
safe_rerun()
# --- Sub-Step 2b: Display Questions and Collect Answers ---
elif st.session_state.refinement_sub_step == "await_answers":
st.info("Please answer the following questions to help refine the product idea:")
with st.form("answers_form"):
# Display generated questions and input fields for answers
for i, question in enumerate(st.session_state.clarifying_questions):
st.session_state.user_answers[i] = st.text_area(
f"β {question}",
key=f"answer_{i}",
value=st.session_state.user_answers.get(i, ""), # Preserve answers on rerun
height=100
)
submit_answers_button = st.form_submit_button(
"β‘οΈ Submit Answers & Generate Refined Description",
use_container_width=True,
disabled=st.session_state.processing
)
if submit_answers_button:
# Basic check if answers are provided (optional)
# if not all(st.session_state.user_answers.values()):
# st.warning("Please try to answer all questions for the best result.")
# else:
st.session_state.refinement_sub_step = "generate_final_refinement"
st.session_state.processing = True # Start final refinement generation
safe_rerun()
# Option to go back
if st.button("β¬
οΈ Back to Idea Input (Discard Q&A)", disabled=st.session_state.processing):
st.session_state.current_step = "input_idea"
# Clear Q&A state
st.session_state.clarifying_questions = []
st.session_state.user_answers = {}
safe_rerun()
# --- Sub-Step 2c: Generate Final Refined Description (using Q&A) ---
elif st.session_state.refinement_sub_step == "generate_final_refinement":
st.info(f"Using **{st.session_state.model_choice}** to generate the final refined description based on the idea and your answers. Please wait.")
with st.spinner("AI is synthesizing the refined description..."):
# Prepare Q&A string for the prompt
qa_summary = "\n".join([
f"Q: {st.session_state.clarifying_questions[i]}\nA: {answer}"
for i, answer in st.session_state.user_answers.items() if answer # Include only answered questions
]) if st.session_state.user_answers else "No questions were answered."
# --- PROMPT: Define the Final Refinement Prompt (using Q&A) ---
final_refinement_prompt = f"""
# --- PROMPT: Insert your Final Refinement prompt (using Q&A) here ---
# Example: Based on the initial product idea, user preferences, and the following question-answer pairs, generate a concise yet comprehensive 'Refined Product Description'. Synthesize all the information into a well-structured description covering the core value proposition, key features, target audience, and any clarified technical aspects. This description will be the basis for generating all subsequent documents.
# --- End Final Refinement Prompt ---
**Initial Product Idea:**
---
{st.session_state.initial_product_idea}
---
**Optional Preferences/Hints Provided:**
{st.session_state.tech_stack_hint if st.session_state.tech_stack_hint else "None provided"}
---
**Clarifying Questions & User Answers:**
---
{qa_summary}
---
"""
# --- End Final Refinement Prompt ---
system_message_final_refine = "You are an AI assistant synthesizing information into a final product specification."
max_tokens_final_refine = 1500 # Allow slightly more tokens for synthesis
final_refined_content = generate_with_selected_model(
st.session_state.model_choice,
final_refinement_prompt,
max_tokens=max_tokens_final_refine,
system_message=system_message_final_refine
)
if final_refined_content and not final_refined_content.startswith("Error:"):
st.session_state.refined_idea_content = final_refined_content
st.session_state.current_step = "review_idea" # Move to the next main step
else:
st.error("Failed to generate the final refined description.")
# Option to retry or go back might be added here
st.session_state.current_step = "input_idea" # Go back if failed
st.session_state.processing = False # End processing
safe_rerun()
# ---------- Step 3: Review and Confirm Final Idea ----------
if st.session_state.current_step == "review_idea":
st.header("Step 3: Review and Confirm Final Refined Idea")
if st.session_state.refined_idea_content:
st.info("Review the AI's final refined description below (generated using your answers). Edit it as needed. This **final text** will be used to generate all documents.")
# Display Q&A for context if available
if st.session_state.clarifying_questions and st.session_state.user_answers:
with st.expander("View Q&A used for this refinement"):
for i, q in enumerate(st.session_state.clarifying_questions):
st.markdown(f"**Q:** {q}")
st.markdown(f"**A:** {st.session_state.user_answers.get(i, '_No answer_')}")
st.markdown("---")
edited_idea = st.text_area(
"βοΈ **Edit Final Refined Description:**",
value=st.session_state.refined_idea_content,
height=350,
key="final_refined_idea_edit_area",
help="Make any necessary corrections or additions."
)
button_col1, button_col2 = st.columns(2)
with button_col1:
confirm_button = st.button(
"β
Confirm & Proceed to Generate Docs",
key="confirm_final_idea_button",
use_container_width=True,
disabled=st.session_state.processing
)
with button_col2:
back_button = st.button(
"β¬
οΈ Back to Idea Input (Start Over)",
key="back_to_input_final_button",
use_container_width=True,
disabled=st.session_state.processing
)
if confirm_button:
if not edited_idea.strip():
st.warning("The refined description cannot be empty.")
else:
st.session_state.confirmed_idea_content = edited_idea
# Reset generation states
st.session_state.generated_docs = {}
st.session_state.selected_docs_to_generate = {k: False for k in doc_options} # Reset selections
st.session_state.current_step = "generate_docs"
safe_rerun()
if back_button:
st.session_state.current_step = "input_idea"
# Clear refinement & Q&A state
st.session_state.refined_idea_content = None
st.session_state.clarifying_questions = []
st.session_state.user_answers = {}
safe_rerun()
else:
st.error("No refined idea content found. Please go back to Step 1.")
if st.button("β¬
οΈ Back to Idea Input"):
st.session_state.current_step = "input_idea"
safe_rerun()
# ---------- Step 4: Select and Generate Documents ----------
if st.session_state.current_step == "generate_docs":
st.header("Step 4: Generate Product Documents")
if st.session_state.confirmed_idea_content:
st.markdown("**Based on this confirmed final description:**")
with st.expander("View Confirmed Description", expanded=False):
st.markdown(f"> {st.session_state.confirmed_idea_content}")
st.subheader("Select Documents to Generate:")
num_doc_options = len(doc_options)
cols = st.columns(min(num_doc_options, 3))
doc_keys = list(doc_options.keys())
for i, key in enumerate(doc_keys):
config = doc_options[key]
with cols[i % 3]:
if key not in st.session_state.selected_docs_to_generate:
st.session_state.selected_docs_to_generate[key] = False
st.session_state.selected_docs_to_generate[key] = st.checkbox(
config["label"],
value=st.session_state.selected_docs_to_generate.get(key, False),
key=f"checkbox_{key}",
disabled=st.session_state.processing
)
generate_button = st.button(
"π Generate Selected Documents",
key="generate_docs_button",
use_container_width=True,
disabled=st.session_state.processing
)
back_to_review_button = st.button(
"β¬
οΈ Back to Review Final Idea",
key="back_to_review_final_button",
use_container_width=True,
disabled=st.session_state.processing
)
if generate_button:
selected_keys = [k for k, v in st.session_state.selected_docs_to_generate.items() if v]
if not selected_keys:
st.warning("Please select at least one document type to generate.")
else:
st.session_state.processing = True
st.session_state.generated_docs = {}
st.info(f"β³ Generating {len(selected_keys)} selected document(s) using {st.session_state.model_choice}...")
progress_bar = st.progress(0)
generation_successful = True
for i, key in enumerate(selected_keys):
config = doc_options[key]
st.write(f" - Generating {config['label']}...")
with st.spinner(f"AI processing {config['label']}..."):
prompt = config["prompt_func"](
st.session_state.confirmed_idea_content,
st.session_state.tech_stack_hint
)
system_msg = config.get("system_message")
max_tok = config.get("max_tokens", 2000)
content = generate_with_selected_model(
st.session_state.model_choice,
prompt,
max_tokens=max_tok,
system_message=system_msg
)
if content and not content.startswith("Error:"):
st.session_state.generated_docs[key] = content
else:
st.session_state.generated_docs[key] = f"Error: Failed to generate {config['label']}."
generation_successful = False
st.error(f" - Failed to generate {config['label']}. See logs above.")
progress_bar.progress((i + 1) / len(selected_keys))
time.sleep(0.1)
progress_bar.empty()
st.session_state.processing = False
if generation_successful:
st.success("β
Document generation complete!")
else:
st.warning("β οΈ Some documents could not be generated.")
st.session_state.current_step = "display_docs"
safe_rerun()
if back_to_review_button:
st.session_state.current_step = "review_idea"
# Keep confirmed idea, but allow editing again
# The refined_idea_content should still hold the content before editing
safe_rerun()
else:
st.error("Confirmed idea content is missing. Please restart the process from Step 1.")
if st.button("β¬
οΈ Restart Process"):
# Reset key states
st.session_state.current_step = "input_idea"
st.session_state.initial_product_idea = ""
st.session_state.tech_stack_hint = ""
st.session_state.refined_idea_content = None
st.session_state.confirmed_idea_content = None
st.session_state.clarifying_questions = []
st.session_state.user_answers = {}
st.session_state.generated_docs = {}
st.session_state.selected_docs_to_generate = {}
safe_rerun()
# ---------- Step 5: Display Generated Documents ----------
if st.session_state.current_step == "display_docs":
st.header("Step 5: Generated Documents")
if not st.session_state.generated_docs:
st.info("No documents were generated in the previous step.")
else:
st.markdown("**Review the generated documents below:**")
display_order = [key for key in doc_options if key in st.session_state.generated_docs]
for key in display_order:
content = st.session_state.generated_docs.get(key)
if content:
config = doc_options[key]
st.subheader(f"π {config['label']}")
is_error = isinstance(content, str) and content.startswith("Error:")
if is_error:
st.error(content)
else:
# Display/Render content
if config.get("render_func"):
try: config["render_func"](content, key=f"render_{key}")
except Exception as e: st.error(f"Render Error: {e}"); st.code(content)
elif config.get("display_func"):
try: config["display_func"](content, key=f"display_{key}")
except Exception as e: st.error(f"Display Error: {e}"); st.text(content)
else: st.markdown(content)
# Download button
try:
download_data = content.encode('utf-8') if isinstance(content, str) else str(content).encode('utf-8')
st.download_button(
label=f"π₯ Download {config['label']}", data=download_data,
file_name=config["download_filename"], mime=config.get("mime", "text/plain"),
key=f"download_{key}"
)
except Exception as e: st.warning(f"Download Error: {e}")
# Show raw content option
if config.get("render_func") or config.get("code_language"):
if st.checkbox(f"π Show raw content for {config['label']}", key=f"show_raw_{key}", value=False):
st.code(content, language=config.get("code_language", None))
st.markdown("---")
# Navigation buttons
button_col1, button_col2 = st.columns(2)
with button_col1:
generate_more_button = st.button("π Generate Different Documents", key="generate_more_button", use_container_width=True)
with button_col2:
restart_all_button = st.button("βͺ Start New Idea", key="restart_all_button", use_container_width=True)
if generate_more_button:
st.session_state.current_step = "generate_docs"
st.session_state.generated_docs = {}
safe_rerun()
if restart_all_button:
st.session_state.current_step = "input_idea"
st.session_state.initial_product_idea = ""
st.session_state.tech_stack_hint = ""
st.session_state.refined_idea_content = None
st.session_state.confirmed_idea_content = None
st.session_state.clarifying_questions = []
st.session_state.user_answers = {}
st.session_state.generated_docs = {}
st.session_state.selected_docs_to_generate = {}
safe_rerun()
# ---------- Footer ----------
st.markdown("---")
footer_model_choice = st.session_state.get('model_choice', 'N/A')
st.caption(f"Using model: **{footer_model_choice}** | Workflow Step: **{st.session_state.get('current_step', 'N/A')}**"
f"{' (Sub-step: ' + st.session_state.get('refinement_sub_step', 'N/A') + ')' if st.session_state.get('current_step') == 'refine_idea' else ''}")
|