|
from fastapi import FastAPI, File, UploadFile, HTTPException |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.responses import StreamingResponse |
|
from fastapi.responses import FileResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
import pandas as pd |
|
from io import StringIO |
|
import os |
|
import uuid |
|
|
|
import googletrans |
|
from googletrans import Translator |
|
translator = Translator() |
|
lan = googletrans.LANGUAGES |
|
|
|
keys = list(lan.keys()) |
|
vals = list(lan.values()) |
|
|
|
from pandasai import SmartDataframe |
|
import pandas as pd |
|
from pandasai.llm import OpenAI |
|
|
|
|
|
secret = os.environ["key"] |
|
|
|
app = FastAPI() |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
@app.post("/translator") |
|
async def tra(sentence,lang): |
|
lang = lang.lower() |
|
return translator.translate(sentence,dest=keys[vals.index(lang)]).text |
|
|
|
def convert_image_to_base64(image_path): |
|
with Image.open(image_path) as image: |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_bytes = buffered.getvalue() |
|
img_base64 = base64.b64encode(img_bytes) |
|
img_base64_string = img_base64.decode("utf-8") |
|
return img_base64_string |
|
|
|
|
|
@app.post("/get_image_for_text") |
|
async def get_image_for_text(email,query,file: UploadFile = File(...)): |
|
print(file.filename) |
|
file_name = file.filename |
|
with open(email+file_name, "wb") as file_object: |
|
file_object.write(file.file.read()) |
|
uuid1 = uuid.uuid1() |
|
llm = OpenAI(api_token=secret,save_charts=True) |
|
|
|
|
|
if file_name.endswith('.csv'): |
|
df = pd.read_csv(email+file_name) |
|
elif file_name.endswith('.xls') or file_name.endswith('.xlsx'): |
|
df = pd.read_excel(email+file_name) |
|
else: |
|
return {"error": "Unsupported file type"} |
|
|
|
sdf = SmartDataframe(df, config={"llm": llm}) |
|
sdf.chat(query) |
|
|
|
code_to_exec = "import matplotlib.pyplot as plt\nimport seaborn as sns\n" |
|
code_to_exec = code_to_exec + sdf.last_code_generated.replace("dfs[0]","dfs") |
|
code_to_exec = code_to_exec.replace("exports/charts/temp_chart.png",email+file_name+".png") |
|
code_to_exec = code_to_exec+f"\nplt.savefig('{email+file_name}.png')" |
|
|
|
print(code_to_exec) |
|
local_vars = {'dfs': df} |
|
|
|
try: |
|
exec(code_to_exec, globals(), local_vars) |
|
print(email+file_name+".png",df.head()) |
|
|
|
|
|
base64str = convert_image_to_base64(email+file_name+".png") |
|
|
|
return {"id":str(uuid1),"image":base64str} |
|
except Exception as e: |
|
print(str(e)) |
|
return "try again" |
|
|