Apocalypse-19
commited on
Commit
·
631e9fa
1
Parent(s):
c1b5ee4
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,29 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -41,10 +37,7 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
-
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
12 |
|
13 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
14 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def translate(audio):
|
18 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
19 |
return outputs["text"]
|
20 |
|
21 |
|
22 |
def synthesise(text):
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(inputs["input_ids"])
|
26 |
+
|
27 |
+
speech = outputs.audio[0]
|
28 |
+
return speech
|
29 |
|
30 |
|
31 |
def speech_to_speech_translation(audio):
|
|
|
37 |
|
38 |
title = "Cascaded STST"
|
39 |
description = """
|
40 |
+
Demo for Italian to Dutch speech translation using OpenAI Whisper and MMS models
|
|
|
|
|
|
|
41 |
"""
|
42 |
|
43 |
demo = gr.Blocks()
|