AI-Bot-studies / app.py
Sebbe33's picture
Upload app.py
1e803da verified
import gradio as gr
from huggingface_hub import InferenceClient
import urllib.request
import xml.etree.ElementTree as ET
# HuggingFace Inference Client
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct")
# Funktion, um die Eingabe zu bereinigen und einen prägnanten Query zu erstellen
def generate_query(input_text):
stopwords = ["welche", "gibt", "es", "zum", "thema", "studien", "über", "zu", "dem"]
words = input_text.lower().split()
query = " ".join([word for word in words if word not in stopwords])
return query.strip()
# Funktion, um relevante Studien von arXiv zu suchen
def fetch_arxiv_summary(query, sort_by="relevance", sort_order="descending", max_results=20):
url = (f'http://export.arxiv.org/api/query?search_query=all:{urllib.parse.quote(query)}'
f'&start=0&max_results={max_results}&sortBy={sort_by}&sortOrder={sort_order}')
try:
data = urllib.request.urlopen(url)
xml_data = data.read().decode("utf-8")
root = ET.fromstring(xml_data)
summaries = []
for entry in root.findall(".//{http://www.w3.org/2005/Atom}entry"):
summary = entry.find("{http://www.w3.org/2005/Atom}summary")
if summary is not None:
summaries.append(summary.text.strip())
return summaries if summaries else ["Keine relevanten Studien gefunden."]
except Exception as e:
return [f"Fehler beim Abrufen der Studie: {str(e)}"]
# Chatbot-Logik mit arXiv-Integration
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
sort_by,
sort_order,
max_results,
):
# Query generieren und Studien abrufen
query = generate_query(message)
study_summaries = fetch_arxiv_summary(query, sort_by, sort_order, max_results)
study_info = "\n".join(study_summaries)
# Nachrichten vorbereiten
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": f"{message}\nStudien-Info:\n{study_info}"})
# Antwort vom Modell generieren
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio-Interface mit zusätzlichen Eingaben
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Dropdown(label="Sortieren nach", choices=["relevance", "lastUpdatedDate", "submittedDate"], value="relevance"),
gr.Dropdown(label="Sortierreihenfolge", choices=["ascending", "descending"], value="descending"),
gr.Slider(label="Maximale Ergebnisse", minimum=1, maximum=50, value=20, step=1),
],
)
if __name__ == "__main__":
demo.launch()