import gradio as gr from huggingface_hub import InferenceClient import urllib.request import xml.etree.ElementTree as ET # HuggingFace Inference Client client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct") # Funktion, um die Eingabe zu bereinigen und einen prägnanten Query zu erstellen def generate_query(input_text): stopwords = ["welche", "gibt", "es", "zum", "thema", "studien", "über", "zu", "dem"] words = input_text.lower().split() query = " ".join([word for word in words if word not in stopwords]) return query.strip() # Funktion, um relevante Studien von arXiv zu suchen def fetch_arxiv_summary(query, sort_by="relevance", sort_order="descending", max_results=20): url = (f'http://export.arxiv.org/api/query?search_query=all:{urllib.parse.quote(query)}' f'&start=0&max_results={max_results}&sortBy={sort_by}&sortOrder={sort_order}') try: data = urllib.request.urlopen(url) xml_data = data.read().decode("utf-8") root = ET.fromstring(xml_data) summaries = [] for entry in root.findall(".//{http://www.w3.org/2005/Atom}entry"): summary = entry.find("{http://www.w3.org/2005/Atom}summary") if summary is not None: summaries.append(summary.text.strip()) return summaries if summaries else ["Keine relevanten Studien gefunden."] except Exception as e: return [f"Fehler beim Abrufen der Studie: {str(e)}"] # Chatbot-Logik mit arXiv-Integration def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, sort_by, sort_order, max_results, ): # Query generieren und Studien abrufen query = generate_query(message) study_summaries = fetch_arxiv_summary(query, sort_by, sort_order, max_results) study_info = "\n".join(study_summaries) # Nachrichten vorbereiten messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": f"{message}\nStudien-Info:\n{study_info}"}) # Antwort vom Modell generieren response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio-Interface mit zusätzlichen Eingaben demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Dropdown(label="Sortieren nach", choices=["relevance", "lastUpdatedDate", "submittedDate"], value="relevance"), gr.Dropdown(label="Sortierreihenfolge", choices=["ascending", "descending"], value="descending"), gr.Slider(label="Maximale Ergebnisse", minimum=1, maximum=50, value=20, step=1), ], ) if __name__ == "__main__": demo.launch()