herbal-expert / herbal_expert.py
anushm's picture
Upload 3 files
2658964
raw
history blame
11.9 kB
import requests
import json
import random
from langchain.agents import AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain.schema import AgentAction, AgentFinish
from langchain.memory import ConversationBufferWindowMemory
from langchain import LLMChain
from langchain.llms.base import LLM
from Bio import Entrez
from requests import HTTPError
from nltk.stem import WordNetLemmatizer
Entrez.email = "[email protected]"
from langchain.callbacks.manager import CallbackManagerForLLMRun
from typing import List, Union, Optional, Any
class CustomLLM(LLM):
n: int
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
data = {
"messages": [
{
"role": "user",
"content": prompt
}
],
"stop": ["### Instruction:"], "temperature": 0, "max_tokens": 512, "stream": False
}
response = requests.post("https://5423-2605-7b80-3d-320-916c-64e7-c70b-e72d.ngrok-free.app/v1/chat/completions",
headers={"Content-Type": "application/json"}, json=data)
return json.loads(response.text)['choices'][0]['message']['content']
# return make_inference_call(prompt)
class CustomPromptTemplate(StringPromptTemplate):
template: str
def format(self, **kwargs) -> str:
return self.template.format(**kwargs)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
return AgentFinish(return_values={"output": llm_output}, log=llm_output)
bare_output_parser = CustomOutputParser()
question_decompose_prompt = """
### Instruction: Given the previous conversation history and the current question, pick out the relevant keywords from the question that would be used to search a medical article database.
Chat History: {history}
Question: {input}
Your response should be a list of keywords separated by commas:
### Response:
"""
prompt_with_history = CustomPromptTemplate(
template=question_decompose_prompt,
tools=[],
input_variables=["input", "history"]
)
# %%
llm = CustomLLM(n=10)
question_decompose_chain = LLMChain(llm=llm, prompt=prompt_with_history)
question_decompose_agent = LLMSingleActionAgent(
llm_chain=question_decompose_chain,
output_parser=bare_output_parser,
stop=["\nObservation:"],
allowed_tools=[]
)
memory = ConversationBufferWindowMemory(k=10)
ax_1 = AgentExecutor.from_agent_and_tools(
agent=question_decompose_agent,
tools=[],
verbose=True,
memory=memory
)
def get_num_citations(pmid: str):
citations_xml = Entrez.read(
Entrez.elink(dbfrom="pubmed", db="pmc", LinkName="pubmed_pubmed_citedin", from_uid=pmid))
for i in range(0, len(citations_xml)):
if len(citations_xml[i]["LinkSetDb"]) > 0:
pmids_list = [link["Id"] for link in citations_xml[i]["LinkSetDb"][0]["Link"]]
return len(pmids_list)
else:
return 0
def fetch_pubmed_articles(keywords, max_search=10, max_context=3):
"""
The fetch_pubmed_articles function takes in a list of keywords and returns a list of articles.
The function uses the Entrez API to search for articles with the given keywords, then fetches
those articles from PubMed. The function returns a list of strings, where each string is an article.
:param keywords: Search for articles in the pubmed database
:param max_results: Specify the number of articles to be returned default is 1
:param email: Identify the user to ncbi
:return: A list of strings
"""
try:
search_result = Entrez.esearch(db="pubmed", term=keywords, retmax=max_search)
id_list = Entrez.read(search_result)["IdList"]
if len(id_list) == 0:
search_result = Entrez.esearch(db="pubmed", term=keywords[:4], retmax=max_search)
id_list = Entrez.read(search_result)["IdList"]
num_citations = [(id, get_num_citations(id)) for id in id_list]
top_n_papers = sorted(num_citations, key=lambda x: x[1], reverse=True)[:max_context]
print(f"top_{max_context}_papers: ", top_n_papers)
top_n_papers = [paper[0] for paper in top_n_papers]
fetch_handle = Entrez.efetch(db="pubmed", id=top_n_papers, rettype="medline", retmode="xml")
fetched_articles = Entrez.read(fetch_handle)
articles = []
# somehow only pull natural therapeutic articles
for fetched in fetched_articles['PubmedArticle']:
title = fetched['MedlineCitation']['Article']['ArticleTitle']
abstract = fetched['MedlineCitation']['Article']['Abstract']['AbstractText'][0] if 'Abstract' in fetched[
'MedlineCitation']['Article'] else "No Abstract"
# pmid = fetched['MedlineCitation']['PMID']
articles.append(title + "\n" + abstract)
return articles
except HTTPError as e:
print("HTTPError: ", e)
return []
except RuntimeError as e:
print("RuntimeError: ", e)
return []
def call_model_with_history(messages: list):
"""
The call_model_with_history function takes a list of messages and returns the next message in the conversation.
:param messages: list: Pass the history of messages to the model
:return: the text of the model's reply
"""
data = {
"messages": messages,
"stop": ["### Instruction:"], "temperature": 0, "max_tokens": 512, "stream": False
}
response = requests.post("https://5423-2605-7b80-3d-320-916c-64e7-c70b-e72d.ngrok-free.app/v1/chat/completions", headers={"Content-Type": "application/json"}, json=data)
return json.loads(response.text)['choices'][0]['message']['content']
# TODO: add ability to pass message history to model
def format_prompt_and_query(prompt, **kwargs):
"""
The format_prompt_and_query function takes a prompt and keyword arguments, formats the prompt with the keyword
arguments, and then calls call_model_with_history with a list of messages containing the formatted prompt.
:param prompt: Format the prompt with the values in kwargs
:param **kwargs: Pass a dictionary of key-value pairs to the formatting function
:return: A list of dictionaries
"""
formatted_prompt = prompt.format(**kwargs)
messages = [
{"role": "system", "content": "Perform the instructions to the best of your ability."},
{"role": "user", "content": formatted_prompt}
]
return call_model_with_history(messages)
class HerbalExpert:
def __init__(self, qd_chain):
self.qd_chain = qd_chain
self.wnl = WordNetLemmatizer()
self.default_questions = [
"How is chamomile traditionally used in herbal medicine?",
"What are the potential side effects or interactions of consuming echinacea?",
"Can you explain the different methods of consuming lavender for health benefits?",
"Which herbs are commonly known for their anti-inflammatory properties?",
"I'm experiencing consistent stress and anxiety. What herbs or supplements could help alleviate these symptoms?",
"Are there any natural herbs that could support better sleep?",
"What cannabis or hemp products would you recommend for chronic pain relief?",
"I'm looking to boost my immune system. Are there any specific herbs or supplements that could help?",
"Which herbs or supplements are recommended for enhancing cognitive functions and memory?"
]
# og = Original, qa = Question Asking, ri = Response Improvement
self.prompts = {
"og_answer_prompt": """### Instruction: Answer the following question using the given context. Question: {question}
Answer: ### Response: """,
"ans_decompose_prompt": """### Instruction: Given the following text, identify the 2 most important
keywords that capture the essence of the text. If there's a list of products, choose the top 2 products.
Your response should be a list of only 2 keywords separated by commas. Text: {original_answer} Keywords:
### Response: """,
"qa_prompt": """### Instruction: Answer the following question using the given context.
Question: {question}
Context: {context}
### Response: """,
"ri_prompt": """### Instruction: You are an caring, intelligent question answering agent. Craft a
response that is more informative and intelligent than the original answer and imparts knowledge from
both the old answer and from the context only if it helps answer the question.
Question: {question}
Old Answer: {answer}
Context: {answer2}
Improved answer: ### Response:"""
}
def process_query_words(self, question_words: str, answer_words: str):
# don't need to be searching for these in pubmed. Should we include: 'supplements', 'supplement'
vague_words = ['recommendation', 'recommendations', 'products', 'product']
words = question_words.lower().split(",") + answer_words.lower().split(",")
final_list = []
for word in words:
cleaned = word.strip().strip('"')
if cleaned not in vague_words:
final_list.append(self.wnl.lemmatize(cleaned))
return list(set(final_list))
def convert_question_into_words(self, question: str):
original_answer = format_prompt_and_query(self.prompts["og_answer_prompt"], question=question)
print("Original Answer: ", original_answer)
question_decompose = self.qd_chain.run(question)
print("Question Decompose: ", question_decompose)
original_answer_decompose = format_prompt_and_query(self.prompts["ans_decompose_prompt"],
original_answer=original_answer)
print("Original Answer Decomposed: ", original_answer_decompose)
words = self.process_query_words(question_decompose, original_answer_decompose)
return words, original_answer
def query_expert(self, question: str = None):
question = self.default_questions[
random.randint(0, len(self.default_questions) - 1)] if question is None else question
print("Question: ", question)
keywords, original_response = self.convert_question_into_words(question)
print("Keywords: ", keywords)
context = fetch_pubmed_articles(" AND ".join(keywords), max_search=5)
if len(context) == 0:
return {
"question": question,
"response": original_response,
"info": "No context found"
}
contextual_response = format_prompt_and_query(self.prompts["qa_prompt"], question=question, context=context)
improved_response = format_prompt_and_query(self.prompts["ri_prompt"], question=question,
answer=original_response, answer2=contextual_response)
return {
"question": question,
"response": improved_response,
"info": "Success"
}
herbal_expert = HerbalExpert(ax_1)
if __name__ == '__main__':
herbal_expert = HerbalExpert(ax_1)
answer = herbal_expert.query_expert("I'm experiencing consistent stress and anxiety. What herbs or supplements could help alleviate these symptoms?")
print(answer['response'])
# return to api? who knows