Spaces:
Sleeping
Sleeping
File size: 11,683 Bytes
2658964 ba60965 2658964 8895bbd 2658964 ba60965 8895bbd 2658964 1f43c99 2658964 bc47ca4 1f43c99 bc47ca4 2658964 ba60965 2658964 ba60965 2658964 1f43c99 ba60965 2658964 1f43c99 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 1f43c99 2658964 ba60965 2658964 93f00c1 2658964 93f00c1 2658964 93f00c1 2658964 93f00c1 2658964 93f00c1 ba60965 93f00c1 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 bc47ca4 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 ba60965 2658964 93f00c1 2658964 93f00c1 ba60965 93f00c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import requests
import json
import random
import logging
from langchain.agents import AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain.schema import AgentAction, AgentFinish
from langchain.memory import ConversationBufferWindowMemory
from langchain import LLMChain
from langchain.llms.base import LLM
from Bio import Entrez
from requests import HTTPError
from nltk.stem import WordNetLemmatizer
import nltk
from langchain.callbacks.manager import CallbackManagerForLLMRun
from typing import List, Union, Optional, Any
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ngrok_url = "https://6d75-2605-7b80-3d-320-cc20-aa68-fd8-3c5e.ngrok-free.app/"
Entrez.email = "[email protected]"
nltk.download('wordnet')
def get_num_citations(pmid: str):
"""
The get_num_citations function takes a PubMed ID (pmid) as input and returns the number of citations for that
pmid. The function uses the Entrez module to query PubMed Central's API. The function first queries PMC using
elink to get all articles citing the given pmid, then it counts how many articles are in that list.
:param pmid: str: Specify the pmid of the article you want to get citations for
:return: The number of citations for a given pmid
"""
citations_xml = Entrez.read(
Entrez.elink(dbfrom="pubmed", db="pmc", LinkName="pubmed_pubmed_citedin", from_uid=pmid)
)
for i in range(len(citations_xml)):
if len(citations_xml[i]["LinkSetDb"]) > 0:
pmids_list = [link["Id"] for link in citations_xml[i]["LinkSetDb"][0]["Link"]]
return len(pmids_list)
else:
return 0
def fetch_pubmed_context(keywords, max_search=10, max_context=3):
"""
The fetch_pubmed_articles function takes in a list of keywords and returns the top 3 articles from PubMed that
are most relevant to those keywords. First the search is done on max_search articles, the list is then sorted by
number of citations, then the top max_content articles are chosen from that list. If no articles are found with
the initial list of keywords, the search is rerun with the top 4 keywords of the list
:param keywords: Search for articles in pubmed
:param max_search: Limit the number of initial search results
:param max_context: Specify the number of articles to return
:return: A list of articles
"""
try:
return query_pubmed(
keywords, max_search, max_context
)
except HTTPError as e:
logging.error(f"HTTPError: {e}")
return []
except RuntimeError as e:
logging.error(f"RuntimeError: {e}")
return []
def query_pubmed(keywords, max_search, max_context):
search_result = Entrez.esearch(db="pubmed", term=keywords, retmax=max_search)
id_list = Entrez.read(search_result)["IdList"]
if len(id_list) == 0:
search_result = Entrez.esearch(db="pubmed", term=keywords[:4], retmax=max_search)
id_list = Entrez.read(search_result)["IdList"]
num_citations = [(id, get_num_citations(id)) for id in id_list]
top_n_papers = sorted(num_citations, key=lambda x: x[1], reverse=True)[:max_context]
logging.info(f"top_{max_context}_papers: {top_n_papers}")
top_n_papers = [paper[0] for paper in top_n_papers]
fetch_handle = Entrez.efetch(db="pubmed", id=top_n_papers, rettype="medline", retmode="xml")
fetched_articles = Entrez.read(fetch_handle)
articles = []
# somehow only pull natural therapeutic articles
for fetched in fetched_articles['PubmedArticle']:
title = fetched['MedlineCitation']['Article']['ArticleTitle']
abstract = fetched['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', ["No Abstract"])[0]
articles.append(title + "\n" + abstract)
return articles
def call_model_with_history(messages: list):
"""
The call_model_with_history function takes a list of messages and returns the next message in the conversation.
:param messages: list: Pass the history of messages to the model
:return: the text of the model's reply
"""
data = {
"messages": messages,
"stop": ["### Instruction:"], "temperature": 0, "max_tokens": 512, "stream": False, "repeat_penalty": 1.2
}
response = requests.post(
f"{ngrok_url}v1/chat/completions",
headers={"Content-Type": "application/json"},
json=data,
)
return json.loads(response.text)['choices'][0]['message']['content']
def format_prompt_and_query(prompt: str, system_role: bool, **kwargs):
"""
The format_prompt_and_query function takes a prompt and keyword arguments, formats the prompt with the keyword
arguments, and then calls call_model_with_history with a list of messages containing the formatted prompt.
:param system_role:
:param prompt: Format the prompt with the values in kwargs
:param **kwargs: Pass a dictionary of key-value pairs to the prompt formatting function
:return: A list of dictionaries
"""
formatted_prompt = prompt.format(**kwargs)
messages = []
if system_role:
messages.append({"role": "system", "content": "Perform the instructions to the best of your ability."})
else:
messages.append({"role": "system",
"content": "Develop an AI-based system to recommend optimal herbal products for specific health needs. Analyze the chemical composition, structural parameters, and pharmacology of natural medicinal substances found in plants, fungi, and roots. Cross-reference all information with toxicology data and pharmaceutical drugs to mitigate any potential risks, ensuring that the recommendations are safe, effective, and free from toxic chemicals."})
messages.append({"role": "user", "content": formatted_prompt})
return call_model_with_history(messages)
class HerbalExpert:
def __init__(self):
self.wnl = WordNetLemmatizer()
self.default_questions = [
"How is chamomile traditionally used in herbal medicine?",
"What are the potential side effects or interactions of consuming echinacea alongside finasteride?",
"Can you explain the different methods of consuming lavender for health benefits?",
"Which herbs are commonly known for their anti-inflammatory properties?",
"I'm experiencing consistent stress and anxiety. What herbs or supplements could help alleviate these symptoms?",
"Are there any natural herbs that could support better sleep?",
"What cannabis or hemp products would you recommend for chronic pain relief?",
"I'm looking to boost my immune system. Are there any specific herbs or supplements that could help?",
"Which herbs or supplements are recommended for enhancing cognitive functions and memory?",
"What natural (herbal) medicinal molecule is the best alternative for pharmaceutical drugs, e.g., opiates?"
]
# qd = Question Decompose, og = Original, qa = Question Asking, ri = Response Improvement
self.prompts = {
"qd_prompt": """### Instruction: Identify and list the keywords that capture the essence of the question. List them as a string separated by commas. Focus on the question. Order the keyword by importance. The first keyword should be the most important keyword in the question and the last keyword should be the least important keyword.
Question: {question}
YOUR RESPONSE SHOULD BE A STRING OF COMMA SEPARATED KEYWORDS:
### Response: Keywords: """,
"og_answer_prompt": """### Instruction: Answer the following question to the best of your ability. Question: {question}
### Response: Answer: """,
"ans_decompose_prompt": """### Instruction: Given the following text, identify the 2 most important keywords that capture the essence of the text. If there's a list of products, choose the top 2 products. Your response should be a list of only 2 keywords separated by commas.
Text: {original_answer}
### Response: Keywords: """,
"qa_prompt": """### Instruction: Answer the following question using the given context ONLY if the context is relevant to the question. If the context doesn't help answer the question, ONLY respond with "I don't know".
Question: {question}
Context: {context}
### Response: Answer: """,
"ri_prompt": """### Instruction: You are an caring, intelligent question answering agent. Craft a response that is more safe, informative and intelligent than the original answer and imparts knowledge from both the old answer and from the context ONLY if it helps answer the question.
Question: {question}
Old Answer: {answer}
Context: {answer2}
### Response: Improved Answer: """
}
def process_query_words(self, question_words: str):
# don't need to be searching for these in pubmed. Should we include: 'supplements', 'supplement'
vague_words = ['recommendation', 'recommendations', 'products', 'product', 'scholarly articles', 'academic database']
words = question_words.lower().split(",")[:4]
final_list = []
for word in words:
cleaned = word.strip().strip('"')
if cleaned not in vague_words:
final_list.append(self.wnl.lemmatize(cleaned))
return list(set(final_list))
def convert_question_into_words(self, question: str):
original_answer = format_prompt_and_query(self.prompts["og_answer_prompt"], system_role=False, question=question)
logging.info(f"Original Answer: {original_answer}")
question_decompose = format_prompt_and_query(self.prompts["qd_prompt"], system_role=True, question=question)
logging.info(f"Question Decompose: {question_decompose}")
words = self.process_query_words(question_decompose)
return words, original_answer
def query_expert(self, question: str = None):
question = random.choice(self.default_questions) if question is None else question
logging.info(f"Question: {question}")
keywords, original_response = self.convert_question_into_words(question)
logging.info(f"Keywords: {keywords}")
context = fetch_pubmed_context(" AND ".join(keywords), max_search=5)
logging.info(f"Context: {context}")
if len(context) == 0:
return {
"question": question,
"response": original_response,
"info": "No context found"
}
contextual_response = format_prompt_and_query(self.prompts["qa_prompt"], system_role=False, question=question,
context=context)
logging.info(f"Contextual Response: {contextual_response}")
improved_response = format_prompt_and_query(self.prompts["ri_prompt"], system_role=False, question=question,
answer=original_response, answer2=contextual_response)
logging.info(f"Improved Response: {improved_response}")
return {
"question": question,
"response": improved_response,
"info": "Success"
}
herbal_expert = HerbalExpert()
if __name__ == '__main__':
herbal_expert = HerbalExpert()
answer = herbal_expert.query_expert()
# logging.info(answer['response'])
# # return to api? who knows
|