File size: 11,888 Bytes
2658964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aefa8cd
2658964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aefa8cd
2658964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aefa8cd
2658964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import requests
import json
import random

from langchain.agents import AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain.schema import AgentAction, AgentFinish
from langchain.memory import ConversationBufferWindowMemory
from langchain import LLMChain
from langchain.llms.base import LLM
from Bio import Entrez
from requests import HTTPError
from nltk.stem import WordNetLemmatizer

Entrez.email = "[email protected]"

from langchain.callbacks.manager import CallbackManagerForLLMRun
from typing import List, Union, Optional, Any

ngrok_url = 'https://2590-2605-7b80-3d-320-a515-4f0d-f60e-71e5.ngrok-free.app/'

class CustomLLM(LLM):
    n: int

    @property
    def _llm_type(self) -> str:
        return "custom"

    def _call(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any,
    ) -> str:
        data = {
            "messages": [
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            "stop": ["### Instruction:"], "temperature": 0, "max_tokens": 512, "stream": False
        }

        response = requests.post(ngrok_url + "v1/chat/completions",
                                 headers={"Content-Type": "application/json"}, json=data)
        return json.loads(response.text)['choices'][0]['message']['content']

        # return make_inference_call(prompt)


class CustomPromptTemplate(StringPromptTemplate):
    template: str

    def format(self, **kwargs) -> str:
        return self.template.format(**kwargs)


class CustomOutputParser(AgentOutputParser):
    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
        return AgentFinish(return_values={"output": llm_output}, log=llm_output)


bare_output_parser = CustomOutputParser()
question_decompose_prompt = """
### Instruction: Given the previous conversation history and the current question, pick out the relevant keywords from the question that would be used to search a medical article database.
Chat History: {history}
Question: {input}

Your response should be a list of keywords separated by commas:
### Response:
"""

prompt_with_history = CustomPromptTemplate(
    template=question_decompose_prompt,
    tools=[],
    input_variables=["input", "history"]
)
# %%
llm = CustomLLM(n=10)
question_decompose_chain = LLMChain(llm=llm, prompt=prompt_with_history)

question_decompose_agent = LLMSingleActionAgent(
    llm_chain=question_decompose_chain,
    output_parser=bare_output_parser,
    stop=["\nObservation:"],
    allowed_tools=[]
)

memory = ConversationBufferWindowMemory(k=10)
ax_1 = AgentExecutor.from_agent_and_tools(
    agent=question_decompose_agent,
    tools=[],
    verbose=True,
    memory=memory
)


def get_num_citations(pmid: str):
    citations_xml = Entrez.read(
        Entrez.elink(dbfrom="pubmed", db="pmc", LinkName="pubmed_pubmed_citedin", from_uid=pmid))

    for i in range(0, len(citations_xml)):
        if len(citations_xml[i]["LinkSetDb"]) > 0:
            pmids_list = [link["Id"] for link in citations_xml[i]["LinkSetDb"][0]["Link"]]
            return len(pmids_list)
        else:
            return 0

def fetch_pubmed_articles(keywords, max_search=10, max_context=3):
    """
    The fetch_pubmed_articles function takes in a list of keywords and returns a list of articles.
        The function uses the Entrez API to search for articles with the given keywords, then fetches
        those articles from PubMed. The function returns a list of strings, where each string is an article.

    :param keywords: Search for articles in the pubmed database
    :param max_results: Specify the number of articles to be returned default is 1
    :param email: Identify the user to ncbi
    :return: A list of strings
    """

    try:
        search_result = Entrez.esearch(db="pubmed", term=keywords, retmax=max_search)
        id_list = Entrez.read(search_result)["IdList"]

        if len(id_list) == 0:
            search_result = Entrez.esearch(db="pubmed", term=keywords[:4], retmax=max_search)
            id_list = Entrez.read(search_result)["IdList"]

        num_citations = [(id, get_num_citations(id)) for id in id_list]
        top_n_papers = sorted(num_citations, key=lambda x: x[1], reverse=True)[:max_context]
        print(f"top_{max_context}_papers: ", top_n_papers)

        top_n_papers = [paper[0] for paper in top_n_papers]
        fetch_handle = Entrez.efetch(db="pubmed", id=top_n_papers, rettype="medline", retmode="xml")
        fetched_articles = Entrez.read(fetch_handle)

        articles = []
        # somehow only pull natural therapeutic articles
        for fetched in fetched_articles['PubmedArticle']:
            title = fetched['MedlineCitation']['Article']['ArticleTitle']
            abstract = fetched['MedlineCitation']['Article']['Abstract']['AbstractText'][0] if 'Abstract' in fetched[
                'MedlineCitation']['Article'] else "No Abstract"
            # pmid = fetched['MedlineCitation']['PMID']
            articles.append(title + "\n" + abstract)

        return articles
    except HTTPError as e:
        print("HTTPError: ", e)
        return []
    except RuntimeError as e:
        print("RuntimeError: ", e)
        return []


def call_model_with_history(messages: list):
    """
    The call_model_with_history function takes a list of messages and returns the next message in the conversation.

    :param messages: list: Pass the history of messages to the model
    :return: the text of the model's reply
    """
    data = {
        "messages": messages,
        "stop": ["### Instruction:"], "temperature": 0, "max_tokens": 512, "stream": False
    }

    response = requests.post(ngrok_url+ "v1/chat/completions", headers={"Content-Type": "application/json"}, json=data)
    return json.loads(response.text)['choices'][0]['message']['content']



# TODO: add ability to pass message history to model
def format_prompt_and_query(prompt, **kwargs):
    """
    The format_prompt_and_query function takes a prompt and keyword arguments, formats the prompt with the keyword
    arguments, and then calls call_model_with_history with a list of messages containing the formatted prompt.

    :param prompt: Format the prompt with the values in kwargs
    :param **kwargs: Pass a dictionary of key-value pairs to the formatting function
    :return: A list of dictionaries
    """

    formatted_prompt = prompt.format(**kwargs)

    messages = [
        {"role": "system", "content": "Perform the instructions to the best of your ability."},
        {"role": "user", "content": formatted_prompt}
    ]

    return call_model_with_history(messages)


class HerbalExpert:
    def __init__(self, qd_chain):
        self.qd_chain = qd_chain
        self.wnl = WordNetLemmatizer()
        self.default_questions = [
            "How is chamomile traditionally used in herbal medicine?",
            "What are the potential side effects or interactions of consuming echinacea?",
            "Can you explain the different methods of consuming lavender for health benefits?",
            "Which herbs are commonly known for their anti-inflammatory properties?",
            "I'm experiencing consistent stress and anxiety. What herbs or supplements could help alleviate these symptoms?",
            "Are there any natural herbs that could support better sleep?",
            "What cannabis or hemp products would you recommend for chronic pain relief?",
            "I'm looking to boost my immune system. Are there any specific herbs or supplements that could help?",
            "Which herbs or supplements are recommended for enhancing cognitive functions and memory?"
        ]
        # og = Original, qa = Question Asking, ri = Response Improvement
        self.prompts = {
            "og_answer_prompt": """### Instruction: Answer the following question using the given context. Question: {question} 
            Answer: ### Response: """,

            "ans_decompose_prompt": """### Instruction: Given the following text, identify the 2 most important 
            keywords that capture the essence of the text. If there's a list of products, choose the top 2 products. 
            Your response should be a list of only 2 keywords separated by commas. Text: {original_answer} Keywords: 
            ### Response: """,

            "qa_prompt": """### Instruction: Answer the following question using the given context.
            Question: {question}
            Context: {context}
            ### Response:  """,

            "ri_prompt": """### Instruction: You are an caring, intelligent question answering agent. Craft a 
            response that is more informative and intelligent than the original answer and imparts knowledge from 
            both the old answer and from the context only if it helps answer the question. 
            Question: {question} 
            Old Answer: {answer} 
            Context: {answer2} 
            Improved answer: ### Response:"""
        }

    def process_query_words(self, question_words: str, answer_words: str):
        # don't need to be searching for these in pubmed. Should we include: 'supplements', 'supplement'
        vague_words = ['recommendation', 'recommendations', 'products', 'product']
        words = question_words.lower().split(",") + answer_words.lower().split(",")

        final_list = []
        for word in words:
            cleaned = word.strip().strip('"')
            if cleaned not in vague_words:
                final_list.append(self.wnl.lemmatize(cleaned))

        return list(set(final_list))

    def convert_question_into_words(self, question: str):
        original_answer = format_prompt_and_query(self.prompts["og_answer_prompt"], question=question)
        print("Original Answer: ", original_answer)

        question_decompose = self.qd_chain.run(question)
        print("Question Decompose: ", question_decompose)

        original_answer_decompose = format_prompt_and_query(self.prompts["ans_decompose_prompt"],
                                                            original_answer=original_answer)
        print("Original Answer Decomposed: ", original_answer_decompose)

        words = self.process_query_words(question_decompose, original_answer_decompose)
        return words, original_answer

    def query_expert(self, question: str = None):
        question = self.default_questions[
            random.randint(0, len(self.default_questions) - 1)] if question is None else question
        print("Question: ", question)

        keywords, original_response = self.convert_question_into_words(question)
        print("Keywords: ", keywords)

        context = fetch_pubmed_articles(" AND ".join(keywords), max_search=5)

        if len(context) == 0:
            return {
                "question": question,
                "response": original_response,
                "info": "No context found"
            }

        contextual_response = format_prompt_and_query(self.prompts["qa_prompt"], question=question, context=context)
        improved_response = format_prompt_and_query(self.prompts["ri_prompt"], question=question,
                                                    answer=original_response, answer2=contextual_response)

        return {
            "question": question,
            "response": improved_response,
            "info": "Success"
        }


herbal_expert = HerbalExpert(ax_1)


if __name__ == '__main__':
    herbal_expert = HerbalExpert(ax_1)
    answer = herbal_expert.query_expert("I'm experiencing consistent stress and anxiety. What herbs or supplements could help alleviate these symptoms?")
    print(answer['response'])
    # return to api? who knows