Spaces:
Build error
Build error
Anthony-Ml
commited on
Commit
•
311d8c3
1
Parent(s):
94d2d6e
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
from fastai.vision.all import *
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
title = "COVID_19 Infection Detectation App!"
|
7 |
head = (
|
@@ -56,7 +61,42 @@ def predict_image(get_image):
|
|
56 |
pred, idx, probs = learn.predict(get_image)
|
57 |
return dict(zip(categories, map(float, probs)))
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
enable_queue=True
|
61 |
|
62 |
gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
|
|
|
2 |
from fastai.vision.all import *
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
|
5 |
+
import torch, torchvision
|
6 |
+
from torchvision import transforms
|
7 |
+
from pytorch_grad_cam import GradCAM
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
+
from PIL import Image
|
10 |
|
11 |
title = "COVID_19 Infection Detectation App!"
|
12 |
head = (
|
|
|
61 |
pred, idx, probs = learn.predict(get_image)
|
62 |
return dict(zip(categories, map(float, probs)))
|
63 |
|
64 |
+
def interpretation_function(get_image):
|
65 |
+
# Create or load your PyTorch model
|
66 |
+
target_layer = learn.layer4[-1]
|
67 |
+
# Create an instance of GradCAM
|
68 |
+
cam = GradCAM(model=learn, target_layer=target_layer)
|
69 |
+
# Load and preprocess your image
|
70 |
+
image_path = get_image #'your_image.jpg'
|
71 |
+
image = Image.open(image_path)
|
72 |
+
preprocess = transforms.Compose([
|
73 |
+
transforms.Resize((224, 224)),
|
74 |
+
transforms.ToTensor(),
|
75 |
+
])
|
76 |
+
input_image = preprocess(image).unsqueeze(0) # Add a batch dimension
|
77 |
+
input_image = input_image.to('cuda' if torch.cuda.is_available() else 'cpu')
|
78 |
+
# Compute the CAM
|
79 |
+
cam_image = cam(input_tensor=input_image, target_category=None)
|
80 |
+
# Compute the CAM
|
81 |
+
cam_image = cam(input_tensor=input_image, target_category=None)
|
82 |
+
# Show the CAM on the original image
|
83 |
+
visualization = show_cam_on_image(input_image, cam_image)
|
84 |
+
return visualization
|
85 |
+
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
input_img = gr.Image(label="Input Image", shape=(224, 224))
|
90 |
+
with gr.Row():
|
91 |
+
interpret = gr.Button("Interpret")
|
92 |
+
with gr.Column():
|
93 |
+
label = gr.Label(label="Predicted Class")
|
94 |
+
with gr.Column():
|
95 |
+
interpretation = gr.components.Interpretation(input_img)
|
96 |
+
interpret.click(interpretation_function, input_img, interpretation)
|
97 |
+
|
98 |
+
|
99 |
+
#interpretation="default"
|
100 |
enable_queue=True
|
101 |
|
102 |
gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
|