File size: 10,065 Bytes
ec0fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import torch.nn.functional as F
from .base_model import BaseModel
from . import networks, losses


class C(BaseModel):
    """This class implements the conv-based model for image completion"""
    def name(self):
        return "Conv-based Image Completion"

    @staticmethod
    def modify_options(parser, is_train=True):
        """Add new options and rewrite default values for existing options"""
        parser.add_argument('--coarse_or_refine', type=str, default='coarse', help='train the transform or refined network')
        parser.add_argument('--down_layers', type=int, default=4, help='# times down sampling for refine generator')
        if is_train:
            parser.add_argument('--lambda_rec', type=float, default=10.0, help='weight for image reconstruction loss')
            parser.add_argument('--lambda_g', type=float, default=1.0, help='weight for discriminator loss')
            parser.add_argument('--lambda_lp', type=float, default=10.0, help='weight for the perceptual loss')
            parser.add_argument('--lambda_gradient', type=float, default=0.0, help='weight for the gradient penalty')

        return parser

    def __init__(self, opt):
        """inital the Transformer model"""
        BaseModel.__init__(self, opt)
        self.visual_names = ['img', 'img_m', 'img_g', 'img_out']
        self.model_names = ['E', 'G', 'D',]
        self.loss_names = ['G_rec', 'G_lp', 'G_GAN', 'D_real', 'D_fake']

        self.netE = networks.define_E(opt)
        self.netG = networks.define_G(opt)
        self.netD = networks.define_D(opt, opt.fixed_size)

        if 'refine' in self.opt.coarse_or_refine:
            opt = self._refine_opt(opt)
            self.netG_Ref = networks.define_G(opt)
            self.netD_Ref = networks.define_D(opt, opt.fine_size)
            self.visual_names += ['img_ref', 'img_ref_out']
            self.model_names += ['G_Ref', 'D_Ref']

        if self.isTrain:
            # define the loss function
            self.L1loss = torch.nn.L1Loss()
            self.GANloss = losses.GANLoss(opt.gan_mode).to(self.device)
            self.NormalVGG = losses.Normalization(self.device)
            self.LPIPSloss = losses.LPIPSLoss(ckpt_path=opt.lipip_path).to(self.device)
            if len(self.opt.gpu_ids) > 0:
                self.LPIPSloss = torch.nn.parallel.DataParallel(self.LPIPSloss, self.opt.gpu_ids)
            # define the optimizer
            if 'coarse' in self.opt.coarse_or_refine:
                self.optimizerG = torch.optim.Adam(list(self.netE.parameters()) + list(self.netG.parameters()),
                                                   lr=opt.lr, betas=(opt.beta1, opt.beta2))
                self.optimizerD = torch.optim.Adam(self.netD.parameters(), lr=opt.lr * 4, betas=(opt.beta1, opt.beta2))
                self.optimizers.append(self.optimizerG)
                self.optimizers.append(self.optimizerD)
            if 'refine' in self.opt.coarse_or_refine:
                self.optimizerGRef = torch.optim.Adam(self.netG_Ref.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
                self.optimizerDRef = torch.optim.Adam(self.netD_Ref.parameters(), lr=opt.lr * 4, betas=(opt.beta1, opt.beta2))
                self.optimizers.append(self.optimizerGRef)
                self.optimizers.append(self.optimizerDRef)
        else:
            self.visual_names = ['img', 'img_m']

    def set_input(self, input):
        """Unpack input data from the data loader and perform necessary pre-process steps"""
        self.input = input

        self.image_paths = self.input['img_path']
        self.img_org = input['img_org'].to(self.device) * 2 - 1
        self.img = input['img'].to(self.device) * 2 - 1
        self.mask = input['mask'].to(self.device)

        # get I_m and I_c for image with mask and complement regions for training
        self.img_m = self.mask * self.img_org

    @torch.no_grad()
    def test(self):
        """Run forward processing for testing"""
        fixed_img = F.interpolate(self.img_m, size=self.img.size()[2:], mode='bicubic', align_corners=True).clamp(-1, 1)
        fixed_mask = (F.interpolate(self.mask, size=self.img.size()[2:], mode='bicubic', align_corners=True) > 0.9).type_as(fixed_img)
        out, mask = self.netE(fixed_img, mask=fixed_mask, return_mask=True)

        # sample result
        for i in range(self.opt.nsampling):
            img_g = self.netG(out)
            img_g_org = F.interpolate(img_g, size=self.img_org.size()[2:], mode='bicubic', align_corners=True).clamp(-1,1)
            img_out = self.mask * self.img_org + (1 - self.mask) * img_g_org
            self.save_results(img_out, path=self.opt.save_dir + '/img_out', data_name=i)
            if 'refine' in self.opt.coarse_or_refine:
                img_ref = self.netG_Ref(img_out, mask=self.mask)
                img_ref_out = self.mask * self.img_org + (1 - self.mask) * img_ref
                self.save_results(img_ref_out, path=self.opt.save_dir + '/img_ref_out', data_name=i)

    def forward(self):
        """Run forward processing to get the outputs"""
        fixed_img = F.interpolate(self.img_m, size=self.img.size()[2:], mode='bicubic', align_corners=True).clamp(-1, 1)
        self.fixed_mask = (F.interpolate(self.mask, size=self.img.size()[2:], mode='bicubic', align_corners=True) > 0.9).type_as(fixed_img)
        out, mask = self.netE(fixed_img, mask=self.fixed_mask, return_mask=True)
        self.img_g = self.netG(out)
        img_g_org = F.interpolate(self.img_g, size=self.img_org.size()[2:], mode='bicubic', align_corners=True).clamp(-1, 1)
        self.img_out = self.mask * self.img_org + (1 - self.mask) * img_g_org

        if 'refine' in self.opt.coarse_or_refine:
            self.img_ref = self.netG_Ref(self.img_out, self.mask)
            self.img_ref_out = self.mask * self.img_org + (1 - self.mask) * self.img_ref

    def backward_D_basic(self, netD, real, fake):
        """
        Calculate GAN loss for the discriminator
        :param netD: the discriminator D
        :param real: real examples
        :param fake: examples generated by a generator
        :return: discriminator loss
        """
        self.loss_D_real = self.GANloss(netD(real), True, is_dis=True)
        self.loss_D_fake = self.GANloss(netD(fake), False, is_dis=True)
        loss_D = self.loss_D_real + self.loss_D_fake
        if self.opt.lambda_gradient > 0:
            self.loss_D_Gradient, _ = losses.cal_gradient_penalty(netD, real, fake, real.device, lambda_gp=self.opt.lambda_gradient)
            loss_D += self.loss_D_Gradient
        loss_D.backward()
        return loss_D

    def backward_D(self):
        """Calculate the GAN loss for discriminator"""
        self.loss_D = 0
        if 'coarse' in self.opt.coarse_or_refine:
            self.set_requires_grad([self.netD], True)
            self.optimizerD.zero_grad()
            real = self.img.detach()
            fake = self.img_g.detach()
            self.loss_D += self.backward_D_basic(self.netD, real, fake) if self.opt.lambda_g > 0 else 0
        if 'refine' in self.opt.coarse_or_refine:
            self.set_requires_grad([self.netD_Ref], True)
            self.optimizerDRef.zero_grad()
            real = self.img_org.detach()
            fake = self.img_ref.detach()
            self.loss_D += self.backward_D_basic(self.netD_Ref, real, fake) if self.opt.lambda_g > 0 else 0

    def backward_G(self):
        """Calculate the loss for generator"""
        self.loss_G_GAN = 0
        self.loss_G_rec = 0
        self.loss_G_lp =0
        if 'coarse' in self.opt.coarse_or_refine:
            self.set_requires_grad([self.netD], False)
            self.optimizerG.zero_grad()
            self.loss_G_GAN += self.GANloss(self.netD(self.img_g), True) * self.opt.lambda_g if self.opt.lambda_g > 0 else 0
            self.loss_G_rec += (self.L1loss(self.img_g * (1 - self.fixed_mask), self.img * (1 - self.fixed_mask)) * 3 +
                                self.L1loss(self.img_g * self.fixed_mask, self.img_g * self.fixed_mask)) * self.opt.lambda_rec
            norm_real = self.NormalVGG((self.img + 1) * 0.5)
            norm_fake = self.NormalVGG((self.img_g + 1) * 0.5)
            self.loss_G_lp += (self.LPIPSloss(norm_real, norm_fake).mean()) * self.opt.lambda_lp if self.opt.lambda_lp > 0 else 0
        if 'refine' in self.opt.coarse_or_refine:
            self.set_requires_grad([self.netD_Ref], False)
            self.optimizerGRef.zero_grad()
            self.loss_G_GAN += self.GANloss(self.netD_Ref(self.img_ref), True) * self.opt.lambda_g if self.opt.lambda_g > 0 else 0
            self.loss_G_rec += (self.L1loss(self.img_ref * (1 - self.mask), self.img_org * (1 - self.mask)) * 3 +
                                self.L1loss(self.img_ref * self.mask, self.img_org * self.mask)) * self.opt.lambda_rec
            norm_real = self.NormalVGG((self.img_org + 1) * 0.5)
            norm_fake = self.NormalVGG((self.img_ref + 1) * 0.5)
            self.loss_G_lp += (self.LPIPSloss(norm_real, norm_fake).mean()) * self.opt.lambda_lp if self.opt.lambda_lp > 0 else 0

        self.loss_G = self.loss_G_GAN + self.loss_G_rec + self.loss_G_lp

        self.loss_G.backward()

    def optimize_parameters(self):
        """update network weights"""
        # forward
        self.set_requires_grad([self.netE, self.netG], 'coarse' in self.opt.coarse_or_refine)
        self.forward()
        # update D
        self.backward_D()
        if 'coarse' in self.opt.coarse_or_refine:
            self.optimizerD.step()
        if 'refine' in self.opt.coarse_or_refine:
            self.optimizerDRef.step()
        # update G
        self.backward_G()
        if 'coarse' in self.opt.coarse_or_refine:
            self.optimizerG.step()
        if 'refine' in self.opt.coarse_or_refine:
            self.optimizerGRef.step()

    def _refine_opt(self, opt):
        """modify the opt for refine generator and discriminator"""
        opt.netG = 'refine'
        opt.netD = 'style'
        opt.attn_D = True

        return opt