Spaces:
Runtime error
Runtime error
AnnaPalatkina
commited on
Commit
·
c6ebbf7
1
Parent(s):
a78c573
add wrapper
Browse files- app.py +33 -4
- config.py +10 -0
- saved_models/norbert2_epoch_5.bin +3 -0
- sentiment_wrapper.py +100 -0
app.py
CHANGED
@@ -1,7 +1,36 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from hug_repository.sentiment_wrapper import PredictionModel
|
2 |
import gradio as gr
|
3 |
|
4 |
+
model = PredictionModel()
|
|
|
5 |
|
6 |
+
|
7 |
+
def predict(text:str):
|
8 |
+
result = model.predict([text])[0]
|
9 |
+
return f'class: {result}'
|
10 |
+
|
11 |
+
markdown_text = '''
|
12 |
+
<br>
|
13 |
+
<br>
|
14 |
+
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for fine-grained sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec).
|
15 |
+
|
16 |
+
The model can be easily used for predicting sentiment as follows:
|
17 |
+
```python
|
18 |
+
>>> from sentiment_wrapper import PredictionModel
|
19 |
+
>>> model = PredictionModel()
|
20 |
+
>>> model.predict(['vi liker svart kaffe'])
|
21 |
+
[2]
|
22 |
+
```
|
23 |
+
'''
|
24 |
+
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
with gr.Row(equal_height=False) as row:
|
27 |
+
text_input = gr.Textbox(label="input")
|
28 |
+
text_output = gr.Textbox(label="output")
|
29 |
+
with gr.Row(scale=4) as row:
|
30 |
+
text_button = gr.Button("submit").style(full_width=True)
|
31 |
+
|
32 |
+
text_button.click(fn=predict, inputs=text_input, outputs=text_output)
|
33 |
+
gr.Markdown(markdown_text)
|
34 |
+
|
35 |
+
|
36 |
+
demo.launch()
|
config.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
params = {
|
2 |
+
'pretrained_model_name': 'ltgoslo/norbert2',
|
3 |
+
'path_to_model_bin': 'data/norbert2_epoch_5.bin',
|
4 |
+
'LR': 1e-05,
|
5 |
+
'dropout': 0.4,
|
6 |
+
'warmup': 2,
|
7 |
+
'epochs': 10,
|
8 |
+
'max_length': 512,
|
9 |
+
'batch_size': 4,
|
10 |
+
}
|
saved_models/norbert2_epoch_5.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470395ae27da50eb2291c61cb7d6518aaa2f50fb92279d24fb85ca2f373fc503
|
3 |
+
size 498185517
|
sentiment_wrapper.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
|
2 |
+
from sklearn.metrics import classification_report, f1_score
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
from norbench_SA.config import params
|
6 |
+
from torch import nn
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
import warnings
|
10 |
+
import random
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
|
14 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
|
17 |
+
class Dataset(Dataset):
|
18 |
+
def __init__(self, texts, max_len):
|
19 |
+
self.texts = texts
|
20 |
+
self.tokenizer = BertTokenizer.from_pretrained(params['pretrained_model_name'])
|
21 |
+
self.max_len = max_len
|
22 |
+
|
23 |
+
def __len__(self):
|
24 |
+
return len(self.texts)
|
25 |
+
|
26 |
+
def __getitem__(self, item):
|
27 |
+
text = str(self.texts[item])
|
28 |
+
encoding = self.tokenizer.encode_plus(
|
29 |
+
text,
|
30 |
+
add_special_tokens=True,
|
31 |
+
max_length=self.max_len,
|
32 |
+
return_token_type_ids=False,
|
33 |
+
pad_to_max_length=True,
|
34 |
+
return_attention_mask=True,
|
35 |
+
truncation=True,
|
36 |
+
return_tensors='pt',
|
37 |
+
)
|
38 |
+
|
39 |
+
return {
|
40 |
+
'text': text,
|
41 |
+
'input_ids': encoding['input_ids'].flatten(),
|
42 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
43 |
+
}
|
44 |
+
|
45 |
+
class SentimentClassifier(nn.Module):
|
46 |
+
|
47 |
+
def __init__(self, n_classes):
|
48 |
+
super(SentimentClassifier, self).__init__()
|
49 |
+
self.bert = BertModel.from_pretrained(params['pretrained_model_name'])
|
50 |
+
self.drop = nn.Dropout(params['dropout'])
|
51 |
+
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
|
52 |
+
|
53 |
+
def forward(self, input_ids, attention_mask):
|
54 |
+
|
55 |
+
bert_output = self.bert(
|
56 |
+
input_ids=input_ids,
|
57 |
+
attention_mask=attention_mask,
|
58 |
+
return_dict=False
|
59 |
+
)
|
60 |
+
last_hidden_state, pooled_output = bert_output
|
61 |
+
output = self.drop(pooled_output)
|
62 |
+
return self.out(output)
|
63 |
+
|
64 |
+
|
65 |
+
class PredictionModel:
|
66 |
+
|
67 |
+
def __init__(self):
|
68 |
+
self.model = SentimentClassifier(n_classes = 6)
|
69 |
+
self.loss_fn = nn.CrossEntropyLoss().to(device)
|
70 |
+
|
71 |
+
def create_data_loader(self, X_test, max_len, batch_size):
|
72 |
+
ds = Dataset(
|
73 |
+
texts= np.array(X_test),
|
74 |
+
max_len=max_len
|
75 |
+
)
|
76 |
+
return DataLoader(
|
77 |
+
ds,
|
78 |
+
batch_size=batch_size
|
79 |
+
)
|
80 |
+
|
81 |
+
def predict(self, X_test: list):
|
82 |
+
|
83 |
+
data_loader = self.create_data_loader(X_test, params['max_length'], params['batch_size'])
|
84 |
+
self.model.load_state_dict(torch.load(params['path_to_model_bin']))
|
85 |
+
self.model.eval()
|
86 |
+
losses = []
|
87 |
+
y_pred = []
|
88 |
+
with torch.no_grad():
|
89 |
+
for d in data_loader:
|
90 |
+
input_ids = d["input_ids"].to(device)
|
91 |
+
attention_mask = d["attention_mask"].to(device)
|
92 |
+
outputs = self.model(
|
93 |
+
input_ids=input_ids,
|
94 |
+
attention_mask=attention_mask
|
95 |
+
)
|
96 |
+
_, preds = torch.max(outputs, dim=1)
|
97 |
+
y_pred += preds.tolist()
|
98 |
+
return y_pred
|
99 |
+
|
100 |
+
|