File size: 9,178 Bytes
255ca0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import transformers
from utils import printf
import copy
class prompt:
def __init__(self, tokenizer, max_len, add_eos=True):
self.tokenizer = tokenizer
self.max_len = max_len
self.add_eos=add_eos
class instruct_prompt(prompt):
prompt = (
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
)
prompt_input = (
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
"### Instruction:{instruction}\n\n### Input:{input}\n\n### Response:"
)
prompt_history = "User:{input}\n\nAssistant:{output}\n\n"
prompt_post = "User:{input}\n\nAssistant:"
def preprocess_gen(self, data_point):
if 'history' not in data_point:
# single instruction format {'instruction':..,'input':..}
if 'input' in data_point:
user_prompt = self.prompt_input.format_map(data_point)
else:
user_prompt = self.prompt.format_map(data_point)
else:
# multi turn format {'history':[..], 'input':[..]}
user_prompt = "\n".join(["User:" + i['input']+"\n"+"Assistant:" + i['output'] for i in data_point['history']]) + "\nUser:" + data_point['input'] + "\nAssistant:"
user_prompt = user_prompt[-self.max_len:]
user_prompt=self.prompt.format_map({'instruction':user_prompt})
input_ids = self.tokenizer(user_prompt)["input_ids"]
return input_ids
def preprocess_train(self, data_point):
# single instruction format {'instruction':..,'input':..,'output':..}
if 'instruction' in data_point:
if 'input' in data_point:
user_prompt = self.prompt_input.format_map(data_point)
else:
user_prompt = self.prompt.format_map(data_point)
output = data_point["output"]
# multi turn format {'input':[..], 'output':[..]}
else:
user_prompt = ''
lens = len(data_point['input'])
for i in range(lens-1):
user_prompt += self.prompt_history.format_map({'input':data_point['input'][i],'output':data_point['output'][i]})
user_prompt += self.prompt_post.format_map({'input':data_point['input'][-1]})
user_prompt = self.prompt.format_map({'instruction': user_prompt})
output = data_point['output'][-1]
len_user_prompt_tokens = (len(self.tokenizer(
user_prompt,
truncation=True,
max_length=self.max_len + 1,
)["input_ids"])- 1) # no eos token
full_tokens = self.tokenizer(
user_prompt + output,
truncation=True,
max_length=self.max_len + 1,
padding="max_length",
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens
+ full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
def data_collator(self,):
return transformers.DataCollatorForLanguageModeling(self.tokenizer, mlm=False)
def postprocess(self, text, render=True):
#import pdb;pdb.set_trace()
printf(text)
output = text.split("### Response:")[1].strip()
output = output.replace("Belle", "Vicuna")
printf(output)
if '###' in output:
output = output.split("###")[0]
if 'User' in output:
output = output.split("User")[0]
output = output.replace('οΏ½','').replace('</s>', '')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f'<pre><code class="language-{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('<br/><pre>','\n<pre>') work for html; but not for gradio
return output
class chat_prompt(prompt):
prompt_pre = (
"The following is a conversation between an AI assistant called Assistant and a human user called User. "
"The assistant is intelligent, knowledgeable and polite to answer questions of user.\n\n"
)
prompt_history = "User:{input}\n\nAssistant:{output}\n\n"
prompt_post = "User:{input}\n\nAssistant:"
def preprocess_gen(self, data_point):
user_prompt = self.prompt_pre
len_avail = self.max_len - len(self.tokenizer(user_prompt, add_special_tokens=False)['input_ids'])
input_prompt = self.prompt_post.format_map({'input':data_point['input']})
len_avail -= len(self.tokenizer(input_prompt, add_special_tokens=False)['input_ids'])
lens = len(data_point['history'])
tokenized_lens = []
for i in range(lens):
tmp_prompt = self.prompt_history.format_map(data_point['history'][i])
tokenized_lens.append(len(self.tokenizer(tmp_prompt,add_special_tokens=False)["input_ids"]))
# ε―εεΌοΌ/2 δΌε
ι€ει’η
i = 0
while sum(tokenized_lens) > len_avail and i < lens:
history = data_point['history'][i]
tmp_len1 = len(history['input'])
tmp_len2 = len(history['output'])
if tmp_len2 > tmp_len1:
history['output'] = history['output'][:tmp_len2//2]
else:
history['input'] = history['input'][:tmp_len1//2]
prompt = self.prompt_history.format_map(history)
single_len =(len(self.tokenizer(prompt,add_special_tokens=False)["input_ids"]))
tokenized_lens[i] = single_len
i += 1
total_len = sum(tokenized_lens)
# θΏδΈε€ηθ― η΄ζ₯ζͺζ
while total_len > len_avail and i < lens - 1 :
total_len -= tokenized_lens[i]
data_point['history'] = data_point['history'][1:]
i += 1
# ζη»εεΉΆ
for i in range(lens):
user_prompt += self.prompt_history.format_map(data_point['history'][i])
user_prompt += input_prompt
printf({'real_input:':user_prompt})
inputs = self.tokenizer(user_prompt)["input_ids"]
return inputs
def preprocess_train(self, data_point):
user_prompt = self.prompt_pre
lens = len(data_point['input'])
for i in range(lens-1):
user_prompt += self.prompt_history.format_map({'input':data_point['input'][i].strip(),'output':data_point['output'][i].strip()})
user_prompt += self.prompt_post.format_map({'input':data_point['input'][-1].strip()})
len_user_prompt_tokens = len(self.tokenizer(
user_prompt,
truncation=True,
max_length=self.max_len,
)["input_ids"]) - 1 # remove extra eos
if self.add_eos:
full_tokens = self.tokenizer(
user_prompt + data_point["output"][-1].strip(),
truncation=True,
padding=False,
max_length=self.max_len,
)["input_ids"] # need eos
else:
full_tokens = self.tokenizer(
user_prompt + data_point["output"][-1].strip(),
truncation=True,
padding=False,
max_length=self.max_len+1,
)["input_ids"][:-1] # delete eos
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
def data_collator(self,):
return transformers.DataCollatorForSeq2Seq(self.tokenizer)
def postprocess(self, text, render=False):
output = text.split("Assistant:")[-1].strip()
if 'User:' in output:
output = output.split("User:")[0]
output = output.replace('οΏ½','')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f'<pre><code class="language-{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('<br/><pre>','\n<pre>') work for html; but not for gradio
return output
def get_data_collator():
return transformers.DataCollatorForLanguageModeling
|