uniformer_light / uniformer_light_video.py
SakuraD's picture
init video
bc059ff
# All rights reserved.
from math import ceil, sqrt
from collections import OrderedDict
import torch
import torch.nn as nn
from functools import partial
from timm.models.vision_transformer import _cfg
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
import os
global_attn = None
token_indices = None
model_path = 'path_to_models'
model_path = {
'uniformer_xxs_128_in1k': os.path.join(model_path, 'uniformer_xxs_128_in1k.pth'),
'uniformer_xxs_160_in1k': os.path.join(model_path, 'uniformer_xxs_160_in1k.pth'),
'uniformer_xxs_192_in1k': os.path.join(model_path, 'uniformer_xxs_192_in1k.pth'),
'uniformer_xxs_224_in1k': os.path.join(model_path, 'uniformer_xxs_224_in1k.pth'),
'uniformer_xs_192_in1k': os.path.join(model_path, 'uniformer_xs_192_in1k.pth'),
'uniformer_xs_224_in1k': os.path.join(model_path, 'uniformer_xs_224_in1k.pth'),
}
def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)
def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1):
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups)
def conv_1x1x1(inp, oup, groups=1):
return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups)
def conv_3x3x3(inp, oup, groups=1):
return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups)
def conv_5x5x5(inp, oup, groups=1):
return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups)
def bn_3d(dim):
return nn.BatchNorm3d(dim)
# code is from https://github.com/YifanXu74/Evo-ViT
def easy_gather(x, indices):
# x => B x N x C
# indices => B x N
B, N, C = x.shape
N_new = indices.shape[1]
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
indices = indices + offset
# only select the informative tokens
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
return out
# code is from https://github.com/YifanXu74/Evo-ViT
def merge_tokens(x_drop, score):
# x_drop => B x N_drop
# score => B x N_drop
weight = score / torch.sum(score, dim=1, keepdim=True)
x_drop = weight.unsqueeze(-1) * x_drop
return torch.sum(x_drop, dim=1, keepdim=True)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# updating weight for global score
self.trade_off = trade_off
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
# update global score
global global_attn
tradeoff = self.trade_off
if isinstance(global_attn, int):
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
elif global_attn.shape[1] == N - 1:
# no additional token and no pruning, update all global scores
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
else:
# only update the informative tokens
# the first one is class token
# the last one is rrepresentative token
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
if self.training:
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
else:
# no use torch.cat() for fast inference
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CMlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = conv_1x1x1(in_features, hidden_features)
self.act = act_layer()
self.fc2 = conv_1x1x1(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class CBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
self.norm1 = bn_3d(dim)
self.conv1 = conv_1x1x1(dim, dim, 1)
self.conv2 = conv_1x1x1(dim, dim, 1)
self.attn = conv_5x5x5(dim, dim, groups=dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = bn_3d(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.pos_embed(x)
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class EvoSABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
trade_off=0, downsample=False):
super().__init__()
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.prune_ratio = prune_ratio
self.downsample = downsample
if downsample:
self.avgpool = nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
def forward(self, cls_token, x):
x = x + self.pos_embed(x)
B, C, T, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
if self.prune_ratio == 1:
x = torch.cat([cls_token, x], dim=1)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
cls_token, x = x[:, :1], x[:, 1:]
x = x.transpose(1, 2).reshape(B, C, T, H, W)
return cls_token, x
else:
global global_attn, token_indices
# calculate the number of informative tokens
N = x.shape[1]
N_ = int(N * self.prune_ratio)
# sort global attention
indices = torch.argsort(global_attn, dim=1, descending=True)
# concatenate x, global attention and token indices => x_ga_ti
# rearrange the tensor according to new indices
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
x_ga_ti = easy_gather(x_ga_ti, indices)
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
# informative tokens
x_info = x_sorted[:, :N_]
# merge dropped tokens
x_drop = x_sorted[:, N_:]
score = global_attn[:, N_:]
# B x N_drop x C => B x 1 x C
rep_token = merge_tokens(x_drop, score)
# concatenate new tokens
x = torch.cat((cls_token, x_info, rep_token), dim=1)
# slow update
fast_update = 0
tmp_x = self.attn(self.norm1(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(tmp_x)
tmp_x = self.mlp(self.norm2(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(tmp_x)
# fast update
x_drop = x_drop + fast_update.expand(-1, N - N_, -1)
cls_token, x = x[:, :1, :], x[:, 1:-1, :]
if self.training:
x_sorted = torch.cat((x, x_drop), dim=1)
else:
x_sorted[:, N_:] = x_drop
x_sorted[:, :N_] = x
# recover token
# scale for normalization
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
# recover order
indices = torch.argsort(token_indices, dim=1)
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
x_ga_ti = easy_gather(x_ga_ti, indices)
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
x_patch = x_patch.transpose(1, 2).reshape(B, C, T, H, W)
if self.downsample:
# downsample global attention
global_attn = global_attn.reshape(B, 1, T, H, W)
global_attn = self.avgpool(global_attn).view(B, -1)
# normalize global attention
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
scale = old_global_scale / new_global_scale
global_attn = global_attn * scale
return cls_token, x_patch
class SABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.pos_embed(x)
B, C, T, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = x.transpose(1, 2).reshape(B, C, T, H, W)
return x
class SplitSABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
self.t_norm = norm_layer(dim)
self.t_attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.pos_embed(x)
B, C, T, H, W = x.shape
attn = x.view(B, C, T, H * W).permute(0, 3, 2, 1).contiguous()
attn = attn.view(B * H * W, T, C)
attn = attn + self.drop_path(self.t_attn(self.t_norm(attn)))
attn = attn.view(B, H * W, T, C).permute(0, 2, 1, 3).contiguous()
attn = attn.view(B * T, H * W, C)
residual = x.view(B, C, T, H * W).permute(0, 2, 3, 1).contiguous()
residual = residual.view(B * T, H * W, C)
attn = residual + self.drop_path(self.attn(self.norm1(attn)))
attn = attn.view(B, T * H * W, C)
out = attn + self.drop_path(self.mlp(self.norm2(attn)))
out = out.transpose(1, 2).reshape(B, C, T, H, W)
return out
class SpeicalPatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.proj = nn.Sequential(
nn.Conv3d(in_chans, embed_dim // 2, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1)),
nn.BatchNorm3d(embed_dim // 2),
nn.GELU(),
nn.Conv3d(embed_dim // 2, embed_dim, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
nn.BatchNorm3d(embed_dim),
)
def forward(self, x):
B, C, T, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
B, C, T, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.norm = nn.LayerNorm(embed_dim)
self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
def forward(self, x):
B, C, T, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
B, C, T, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
return x
class Uniformer_light(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=400, embed_dim=[64, 128, 320, 512],
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.patch_embed1 = SpeicalPatchEmbed(
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
self.patch_embed2 = PatchEmbed(
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
self.patch_embed3 = PatchEmbed(
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
self.patch_embed4 = PatchEmbed(
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
# class token
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
num_heads = [dim // head_dim for dim in embed_dim]
self.blocks1 = nn.ModuleList([
CBlock(
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth[0])])
self.blocks2 = nn.ModuleList([
CBlock(
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
for i in range(depth[1])])
self.blocks3 = nn.ModuleList([
EvoSABlock(
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
downsample=True if i == depth[2] - 1 else False)
for i in range(depth[2])])
self.blocks4 = nn.ModuleList([
EvoSABlock(
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
for i in range(depth[3])])
self.norm = bn_3d(embed_dim[-1])
self.norm_cls = nn.LayerNorm(embed_dim[-1])
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
for name, p in self.named_parameters():
# fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
# are multiplied by 0*0, which is hard for the model to move out of.
if 't_attn.qkv.weight' in name:
nn.init.constant_(p, 0)
if 't_attn.qkv.bias' in name:
nn.init.constant_(p, 0)
if 't_attn.proj.weight' in name:
nn.init.constant_(p, 1)
if 't_attn.proj.bias' in name:
nn.init.constant_(p, 0)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def inflate_weight(self, weight_2d, time_dim, center=False):
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
def forward_features(self, x):
x = self.patch_embed1(x)
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
x = self.patch_embed2(x)
for blk in self.blocks2:
x = blk(x)
x = self.patch_embed3(x)
# add cls_token in stage3
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
global global_attn, token_indices
global_attn = 0
token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
token_indices = token_indices.expand(x.shape[0], -1)
for blk in self.blocks3:
cls_token, x = blk(cls_token, x)
# upsample cls_token before stage4
cls_token = self.cls_upsample(cls_token)
x = self.patch_embed4(x)
# whether reset global attention? Now simple avgpool
token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
token_indices = token_indices.expand(x.shape[0], -1)
for blk in self.blocks4:
cls_token, x = blk(cls_token, x)
if self.training:
# layer normalization for cls_token
cls_token = self.norm_cls(cls_token)
x = self.norm(x)
x = self.pre_logits(x)
return cls_token, x
def forward(self, x):
cls_token, x = self.forward_features(x)
x = x.flatten(2).mean(-1)
if self.training:
x = self.head(x), self.head_cls(cls_token.squeeze(1))
else:
x = self.head(x)
return x
def uniformer_xxs_video(**kwargs):
model = Uniformer_light(
depth=[2, 5, 8, 2],
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
**kwargs)
model.default_cfg = _cfg()
return model
def uniformer_xs_video(**kwargs):
model = Uniformer_light(
depth=[3, 5, 9, 3],
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
**kwargs)
model.default_cfg = _cfg()
return model
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
num_frames = 16
model = uniformer_xxs_video()
# print(model)
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 160, 160))
s = time.time()
print(flop_count_table(flops, max_depth=1))
print(time.time()-s)