Spaces:
Running
Running
# All rights reserved. | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
import torch.nn.functional as F | |
import math | |
from timm.models.vision_transformer import _cfg | |
from timm.models.registry import register_model | |
from timm.models.layers import trunc_normal_, DropPath, to_2tuple | |
layer_scale = False | |
init_value = 1e-6 | |
global_attn = None | |
token_indices = None | |
# code is from https://github.com/YifanXu74/Evo-ViT | |
def easy_gather(x, indices): | |
# x => B x N x C | |
# indices => B x N | |
B, N, C = x.shape | |
N_new = indices.shape[1] | |
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N | |
indices = indices + offset | |
# only select the informative tokens | |
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C) | |
return out | |
# code is from https://github.com/YifanXu74/Evo-ViT | |
def merge_tokens(x_drop, score): | |
# x_drop => B x N_drop | |
# score => B x N_drop | |
weight = score / torch.sum(score, dim=1, keepdim=True) | |
x_drop = weight.unsqueeze(-1) * x_drop | |
return torch.sum(x_drop, dim=1, keepdim=True) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class CMlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) | |
self.act = act_layer() | |
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
# updating weight for global score | |
self.trade_off = trade_off | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
# update global score | |
global global_attn | |
tradeoff = self.trade_off | |
if isinstance(global_attn, int): | |
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1) | |
elif global_attn.shape[1] == N - 1: | |
# no additional token and no pruning, update all global scores | |
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) | |
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn | |
else: | |
# only update the informative tokens | |
# the first one is class token | |
# the last one is rrepresentative token | |
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1) | |
if self.training: | |
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn | |
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1) | |
else: | |
# no use torch.cat() for fast inference | |
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class CBlock(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
self.norm1 = nn.BatchNorm2d(dim) | |
self.conv1 = nn.Conv2d(dim, dim, 1) | |
self.conv2 = nn.Conv2d(dim, dim, 1) | |
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = nn.BatchNorm2d(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
global layer_scale | |
self.ls = layer_scale | |
if self.ls: | |
global init_value | |
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") | |
self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) | |
def forward(self, x): | |
x = x + self.pos_embed(x) | |
if self.ls: | |
x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x))))) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class EvoSABlock(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1, | |
trade_off=0, downsample=False): | |
super().__init__() | |
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.prune_ratio = prune_ratio | |
self.downsample = downsample | |
if downsample: | |
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) | |
global layer_scale | |
self.ls = layer_scale | |
if self.ls: | |
global init_value | |
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") | |
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) | |
if self.prune_ratio != 1: | |
self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) | |
def forward(self, cls_token, x): | |
x = x + self.pos_embed(x) | |
B, C, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
if self.prune_ratio == 1: | |
x = torch.cat([cls_token, x], dim=1) | |
if self.ls: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
cls_token, x = x[:, :1], x[:, 1:] | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
return cls_token, x | |
else: | |
global global_attn, token_indices | |
# calculate the number of informative tokens | |
N = x.shape[1] | |
N_ = int(N * self.prune_ratio) | |
# sort global attention | |
indices = torch.argsort(global_attn, dim=1, descending=True) | |
# concatenate x, global attention and token indices => x_ga_ti | |
# rearrange the tensor according to new indices | |
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) | |
x_ga_ti = easy_gather(x_ga_ti, indices) | |
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] | |
# informative tokens | |
x_info = x_sorted[:, :N_] | |
# merge dropped tokens | |
x_drop = x_sorted[:, N_:] | |
score = global_attn[:, N_:] | |
# B x N_drop x C => B x 1 x C | |
rep_token = merge_tokens(x_drop, score) | |
# concatenate new tokens | |
x = torch.cat((cls_token, x_info, rep_token), dim=1) | |
if self.ls: | |
# slow update | |
fast_update = 0 | |
tmp_x = self.attn(self.norm1(x)) | |
fast_update = fast_update + tmp_x[:, -1:] | |
x = x + self.drop_path(self.gamma_1 * tmp_x) | |
tmp_x = self.mlp(self.norm2(x)) | |
fast_update = fast_update + tmp_x[:, -1:] | |
x = x + self.drop_path(self.gamma_2 * tmp_x) | |
# fast update | |
x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1) | |
else: | |
# slow update | |
fast_update = 0 | |
tmp_x = self.attn(self.norm1(x)) | |
fast_update = fast_update + tmp_x[:, -1:] | |
x = x + self.drop_path(tmp_x) | |
tmp_x = self.mlp(self.norm2(x)) | |
fast_update = fast_update + tmp_x[:, -1:] | |
x = x + self.drop_path(tmp_x) | |
# fast update | |
x_drop = x_drop + fast_update.expand(-1, N - N_, -1) | |
cls_token, x = x[:, :1, :], x[:, 1:-1, :] | |
if self.training: | |
x_sorted = torch.cat((x, x_drop), dim=1) | |
else: | |
x_sorted[:, N_:] = x_drop | |
x_sorted[:, :N_] = x | |
# recover token | |
# scale for normalization | |
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True) | |
# recover order | |
indices = torch.argsort(token_indices, dim=1) | |
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) | |
x_ga_ti = easy_gather(x_ga_ti, indices) | |
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] | |
x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W) | |
if self.downsample: | |
# downsample global attention | |
global_attn = global_attn.reshape(B, 1, H, W) | |
global_attn = self.avgpool(global_attn).view(B, -1) | |
# normalize global attention | |
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True) | |
scale = old_global_scale / new_global_scale | |
global_attn = global_attn * scale | |
return cls_token, x_patch | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
self.norm = nn.LayerNorm(embed_dim) | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
x = self.proj(x) | |
B, C, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
return x | |
class head_embedding(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(head_embedding, self).__init__() | |
self.proj = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
nn.BatchNorm2d(out_channels // 2), | |
nn.GELU(), | |
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
nn.BatchNorm2d(out_channels), | |
) | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class middle_embedding(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(middle_embedding, self).__init__() | |
self.proj = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
nn.BatchNorm2d(out_channels), | |
) | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class UniFormer_Light(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - | |
https://arxiv.org/abs/2010.11929 | |
""" | |
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], | |
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False, | |
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], | |
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
head_dim (int): head dimension | |
mlp_ratio (list): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
qk_scale (float): override default qk scale of head_dim ** -0.5 if set | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
norm_layer: (nn.Module): normalization layer | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
if conv_stem: | |
self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0]) | |
self.patch_embed2 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) | |
self.patch_embed3 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) | |
self.patch_embed4 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) | |
else: | |
self.patch_embed1 = PatchEmbed( | |
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) | |
self.patch_embed2 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) | |
self.patch_embed3 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) | |
self.patch_embed4 = PatchEmbed( | |
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) | |
# class token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2])) | |
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3]) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule | |
num_heads = [dim // head_dim for dim in embed_dim] | |
self.blocks1 = nn.ModuleList([ | |
CBlock( | |
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth[0])]) | |
self.blocks2 = nn.ModuleList([ | |
CBlock( | |
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) | |
for i in range(depth[1])]) | |
self.blocks3 = nn.ModuleList([ | |
EvoSABlock( | |
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer, | |
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i], | |
downsample=True if i == depth[2] - 1 else False) | |
for i in range(depth[2])]) | |
self.blocks4 = nn.ModuleList([ | |
EvoSABlock( | |
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer, | |
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i]) | |
for i in range(depth[3])]) | |
self.norm = nn.BatchNorm2d(embed_dim[-1]) | |
self.norm_cls = nn.LayerNorm(embed_dim[-1]) | |
# Representation layer | |
if representation_size: | |
self.num_features = representation_size | |
self.pre_logits = nn.Sequential(OrderedDict([ | |
('fc', nn.Linear(embed_dim, representation_size)), | |
('act', nn.Tanh()) | |
])) | |
else: | |
self.pre_logits = nn.Identity() | |
# Classifier head | |
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
B = x.shape[0] | |
x = self.patch_embed1(x) | |
x = self.pos_drop(x) | |
for blk in self.blocks1: | |
x = blk(x) | |
x = self.patch_embed2(x) | |
for blk in self.blocks2: | |
x = blk(x) | |
x = self.patch_embed3(x) | |
# add cls_token in stage3 | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) | |
global global_attn, token_indices | |
global_attn = 0 | |
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) | |
token_indices = token_indices.expand(x.shape[0], -1) | |
for blk in self.blocks3: | |
cls_token, x = blk(cls_token, x) | |
# upsample cls_token before stage4 | |
cls_token = self.cls_upsample(cls_token) | |
x = self.patch_embed4(x) | |
# whether reset global attention? Now simple avgpool | |
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) | |
token_indices = token_indices.expand(x.shape[0], -1) | |
for blk in self.blocks4: | |
cls_token, x = blk(cls_token, x) | |
if self.training: | |
# layer normalization for cls_token | |
cls_token = self.norm_cls(cls_token) | |
x = self.norm(x) | |
x = self.pre_logits(x) | |
return cls_token, x | |
def forward(self, x): | |
cls_token, x = self.forward_features(x) | |
x = x.flatten(2).mean(-1) | |
if self.training: | |
x = self.head(x), self.head_cls(cls_token.squeeze(1)) | |
else: | |
x = self.head(x) | |
return x | |
def uniformer_xxs_image(**kwargs): | |
model = UniFormer_Light( | |
depth=[2, 5, 8, 2], conv_stem=True, | |
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], | |
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], | |
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def uniformer_xs_image(**kwargs): | |
model = UniFormer_Light( | |
depth=[3, 5, 9, 3], conv_stem=True, | |
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], | |
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], | |
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
if __name__ == '__main__': | |
import time | |
from fvcore.nn import FlopCountAnalysis | |
from fvcore.nn import flop_count_table | |
import numpy as np | |
seed = 4217 | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
model = uniformer_xxs_image() | |
# print(model) | |
flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160)) | |
s = time.time() | |
print(flop_count_table(flops, max_depth=1)) | |
print(time.time()-s) |