Spaces:
Running
Running
File size: 22,761 Bytes
e8a9c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# All rights reserved.
from collections import OrderedDict
import torch
import torch.nn as nn
from functools import partial
import torch.nn.functional as F
import math
from timm.models.vision_transformer import _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
layer_scale = False
init_value = 1e-6
global_attn = None
token_indices = None
# code is from https://github.com/YifanXu74/Evo-ViT
def easy_gather(x, indices):
# x => B x N x C
# indices => B x N
B, N, C = x.shape
N_new = indices.shape[1]
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
indices = indices + offset
# only select the informative tokens
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
return out
# code is from https://github.com/YifanXu74/Evo-ViT
def merge_tokens(x_drop, score):
# x_drop => B x N_drop
# score => B x N_drop
weight = score / torch.sum(score, dim=1, keepdim=True)
x_drop = weight.unsqueeze(-1) * x_drop
return torch.sum(x_drop, dim=1, keepdim=True)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class CMlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# updating weight for global score
self.trade_off = trade_off
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
# update global score
global global_attn
tradeoff = self.trade_off
if isinstance(global_attn, int):
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
elif global_attn.shape[1] == N - 1:
# no additional token and no pruning, update all global scores
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
else:
# only update the informative tokens
# the first one is class token
# the last one is rrepresentative token
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
if self.training:
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
else:
# no use torch.cat() for fast inference
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
self.norm1 = nn.BatchNorm2d(dim)
self.conv1 = nn.Conv2d(dim, dim, 1)
self.conv2 = nn.Conv2d(dim, dim, 1)
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = nn.BatchNorm2d(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
global layer_scale
self.ls = layer_scale
if self.ls:
global init_value
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)
def forward(self, x):
x = x + self.pos_embed(x)
if self.ls:
x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x)))))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class EvoSABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
trade_off=0, downsample=False):
super().__init__()
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.prune_ratio = prune_ratio
self.downsample = downsample
if downsample:
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)
global layer_scale
self.ls = layer_scale
if self.ls:
global init_value
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
if self.prune_ratio != 1:
self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
def forward(self, cls_token, x):
x = x + self.pos_embed(x)
B, C, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
if self.prune_ratio == 1:
x = torch.cat([cls_token, x], dim=1)
if self.ls:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
cls_token, x = x[:, :1], x[:, 1:]
x = x.transpose(1, 2).reshape(B, C, H, W)
return cls_token, x
else:
global global_attn, token_indices
# calculate the number of informative tokens
N = x.shape[1]
N_ = int(N * self.prune_ratio)
# sort global attention
indices = torch.argsort(global_attn, dim=1, descending=True)
# concatenate x, global attention and token indices => x_ga_ti
# rearrange the tensor according to new indices
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
x_ga_ti = easy_gather(x_ga_ti, indices)
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
# informative tokens
x_info = x_sorted[:, :N_]
# merge dropped tokens
x_drop = x_sorted[:, N_:]
score = global_attn[:, N_:]
# B x N_drop x C => B x 1 x C
rep_token = merge_tokens(x_drop, score)
# concatenate new tokens
x = torch.cat((cls_token, x_info, rep_token), dim=1)
if self.ls:
# slow update
fast_update = 0
tmp_x = self.attn(self.norm1(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(self.gamma_1 * tmp_x)
tmp_x = self.mlp(self.norm2(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(self.gamma_2 * tmp_x)
# fast update
x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1)
else:
# slow update
fast_update = 0
tmp_x = self.attn(self.norm1(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(tmp_x)
tmp_x = self.mlp(self.norm2(x))
fast_update = fast_update + tmp_x[:, -1:]
x = x + self.drop_path(tmp_x)
# fast update
x_drop = x_drop + fast_update.expand(-1, N - N_, -1)
cls_token, x = x[:, :1, :], x[:, 1:-1, :]
if self.training:
x_sorted = torch.cat((x, x_drop), dim=1)
else:
x_sorted[:, N_:] = x_drop
x_sorted[:, :N_] = x
# recover token
# scale for normalization
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
# recover order
indices = torch.argsort(token_indices, dim=1)
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
x_ga_ti = easy_gather(x_ga_ti, indices)
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W)
if self.downsample:
# downsample global attention
global_attn = global_attn.reshape(B, 1, H, W)
global_attn = self.avgpool(global_attn).view(B, -1)
# normalize global attention
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
scale = old_global_scale / new_global_scale
global_attn = global_attn * scale
return cls_token, x_patch
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
self.norm = nn.LayerNorm(embed_dim)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x)
B, C, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
return x
class head_embedding(nn.Module):
def __init__(self, in_channels, out_channels):
super(head_embedding, self).__init__()
self.proj = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels // 2),
nn.GELU(),
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
x = self.proj(x)
return x
class middle_embedding(nn.Module):
def __init__(self, in_channels, out_channels):
super(middle_embedding, self).__init__()
self.proj = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
x = self.proj(x)
return x
class UniFormer_Light(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False,
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
head_dim (int): head dimension
mlp_ratio (list): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
if conv_stem:
self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0])
self.patch_embed2 = PatchEmbed(
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
self.patch_embed3 = PatchEmbed(
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
self.patch_embed4 = PatchEmbed(
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
else:
self.patch_embed1 = PatchEmbed(
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
self.patch_embed2 = PatchEmbed(
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
self.patch_embed3 = PatchEmbed(
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
self.patch_embed4 = PatchEmbed(
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
# class token
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
num_heads = [dim // head_dim for dim in embed_dim]
self.blocks1 = nn.ModuleList([
CBlock(
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth[0])])
self.blocks2 = nn.ModuleList([
CBlock(
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
for i in range(depth[1])])
self.blocks3 = nn.ModuleList([
EvoSABlock(
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
downsample=True if i == depth[2] - 1 else False)
for i in range(depth[2])])
self.blocks4 = nn.ModuleList([
EvoSABlock(
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
for i in range(depth[3])])
self.norm = nn.BatchNorm2d(embed_dim[-1])
self.norm_cls = nn.LayerNorm(embed_dim[-1])
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed1(x)
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
x = self.patch_embed2(x)
for blk in self.blocks2:
x = blk(x)
x = self.patch_embed3(x)
# add cls_token in stage3
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
global global_attn, token_indices
global_attn = 0
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
token_indices = token_indices.expand(x.shape[0], -1)
for blk in self.blocks3:
cls_token, x = blk(cls_token, x)
# upsample cls_token before stage4
cls_token = self.cls_upsample(cls_token)
x = self.patch_embed4(x)
# whether reset global attention? Now simple avgpool
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
token_indices = token_indices.expand(x.shape[0], -1)
for blk in self.blocks4:
cls_token, x = blk(cls_token, x)
if self.training:
# layer normalization for cls_token
cls_token = self.norm_cls(cls_token)
x = self.norm(x)
x = self.pre_logits(x)
return cls_token, x
def forward(self, x):
cls_token, x = self.forward_features(x)
x = x.flatten(2).mean(-1)
if self.training:
x = self.head(x), self.head_cls(cls_token.squeeze(1))
else:
x = self.head(x)
return x
def uniformer_xxs_image(**kwargs):
model = UniFormer_Light(
depth=[2, 5, 8, 2], conv_stem=True,
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
**kwargs)
model.default_cfg = _cfg()
return model
def uniformer_xs_image(**kwargs):
model = UniFormer_Light(
depth=[3, 5, 9, 3], conv_stem=True,
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
**kwargs)
model.default_cfg = _cfg()
return model
if __name__ == '__main__':
import time
from fvcore.nn import FlopCountAnalysis
from fvcore.nn import flop_count_table
import numpy as np
seed = 4217
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
model = uniformer_xxs_image()
# print(model)
flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160))
s = time.time()
print(flop_count_table(flops, max_depth=1))
print(time.time()-s) |