File size: 22,761 Bytes
e8a9c3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# All rights reserved.
from collections import OrderedDict
import torch
import torch.nn as nn
from functools import partial
import torch.nn.functional as F
import math
from timm.models.vision_transformer import _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath, to_2tuple


layer_scale = False
init_value = 1e-6
global_attn = None
token_indices = None


# code is from https://github.com/YifanXu74/Evo-ViT
def easy_gather(x, indices):
    # x => B x N x C
    # indices => B x N
    B, N, C = x.shape
    N_new = indices.shape[1]
    offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
    indices = indices + offset
    # only select the informative tokens
    out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
    return out


# code is from https://github.com/YifanXu74/Evo-ViT
def merge_tokens(x_drop, score):
    # x_drop => B x N_drop
    # score => B x N_drop
    weight = score / torch.sum(score, dim=1, keepdim=True)
    x_drop = weight.unsqueeze(-1) * x_drop
    return torch.sum(x_drop, dim=1, keepdim=True)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CMlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

    
class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        # updating weight for global score
        self.trade_off = trade_off

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)

        # update global score
        global global_attn
        tradeoff = self.trade_off
        if isinstance(global_attn, int):
            global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
        elif global_attn.shape[1] == N - 1:
            # no additional token and no pruning, update all global scores
            cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
            global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
        else:
            # only update the informative tokens
            # the first one is class token
            # the last one is rrepresentative token
            cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
            if self.training:
                temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
                global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
            else:
                # no use torch.cat() for fast inference
                global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CBlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = nn.BatchNorm2d(dim)
        self.conv1 = nn.Conv2d(dim, dim, 1)
        self.conv2 = nn.Conv2d(dim, dim, 1)
        self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        global layer_scale
        self.ls = layer_scale
        if self.ls:
            global init_value
            print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
            self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)

    def forward(self, x):
        x = x + self.pos_embed(x)
        if self.ls:
            x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x)))))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class EvoSABlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
                 trade_off=0, downsample=False):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.prune_ratio = prune_ratio
        self.downsample = downsample
        if downsample:
            self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)
        global layer_scale
        self.ls = layer_scale
        if self.ls:
            global init_value
            print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
            self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
            if self.prune_ratio != 1:
                self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)

    def forward(self, cls_token, x):
        x = x + self.pos_embed(x)
        B, C, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)

        if self.prune_ratio == 1:
            x = torch.cat([cls_token, x], dim=1)
            if self.ls:
                x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
                x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
            else:
                x = x + self.drop_path(self.attn(self.norm1(x)))
                x = x + self.drop_path(self.mlp(self.norm2(x)))
            cls_token, x = x[:, :1], x[:, 1:]
            x = x.transpose(1, 2).reshape(B, C, H, W)
            return cls_token, x  
        else:
            global global_attn, token_indices
            # calculate the number of informative tokens
            N = x.shape[1]
            N_ = int(N * self.prune_ratio)
            # sort global attention
            indices = torch.argsort(global_attn, dim=1, descending=True)

            # concatenate x, global attention and token indices => x_ga_ti
            # rearrange the tensor according to new indices 
            x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
            x_ga_ti = easy_gather(x_ga_ti, indices)
            x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]

            # informative tokens
            x_info = x_sorted[:, :N_]
            # merge dropped tokens
            x_drop = x_sorted[:, N_:]
            score = global_attn[:, N_:]
            #  B x N_drop x C => B x 1 x C
            rep_token = merge_tokens(x_drop, score)
            # concatenate new tokens
            x = torch.cat((cls_token, x_info, rep_token), dim=1)

            if self.ls:
                # slow update
                fast_update = 0
                tmp_x = self.attn(self.norm1(x))
                fast_update = fast_update + tmp_x[:, -1:]
                x = x + self.drop_path(self.gamma_1 * tmp_x)
                tmp_x = self.mlp(self.norm2(x))
                fast_update = fast_update + tmp_x[:, -1:]
                x = x + self.drop_path(self.gamma_2 * tmp_x)
                # fast update
                x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1)
            else:
                # slow update
                fast_update = 0
                tmp_x = self.attn(self.norm1(x))
                fast_update = fast_update + tmp_x[:, -1:]
                x = x + self.drop_path(tmp_x)
                tmp_x = self.mlp(self.norm2(x))
                fast_update = fast_update + tmp_x[:, -1:]
                x = x + self.drop_path(tmp_x)
                # fast update
                x_drop = x_drop + fast_update.expand(-1, N - N_, -1)

            cls_token, x = x[:, :1, :], x[:, 1:-1, :]
            if self.training:
                x_sorted = torch.cat((x, x_drop), dim=1)
            else:
                x_sorted[:, N_:] = x_drop
                x_sorted[:, :N_] = x

            # recover token
            # scale for normalization
            old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
            # recover order
            indices = torch.argsort(token_indices, dim=1)
            x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
            x_ga_ti = easy_gather(x_ga_ti, indices)
            x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
            x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W)

            if self.downsample:
                # downsample global attention
                global_attn = global_attn.reshape(B, 1, H, W)
                global_attn = self.avgpool(global_attn).view(B, -1)
                # normalize global attention
                new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
                scale = old_global_scale / new_global_scale
                global_attn = global_attn * scale
            
            return cls_token, x_patch
   

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        self.norm = nn.LayerNorm(embed_dim)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        x = self.proj(x)
        B, C, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x


class head_embedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(head_embedding, self).__init__()
        self.proj = nn.Sequential(
            nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels // 2),
            nn.GELU(),
            nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x


class middle_embedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(middle_embedding, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x

    
class UniFormer_Light(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
        https://arxiv.org/abs/2010.11929
    """
    def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
                 head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False,
                 prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
                 trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            head_dim (int): head dimension
            mlp_ratio (list): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer
        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) 
        if conv_stem:
            self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0])
            self.patch_embed2 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
            self.patch_embed3 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
            self.patch_embed4 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
        else:
            self.patch_embed1 = PatchEmbed(
                patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
            self.patch_embed2 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
            self.patch_embed3 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
            self.patch_embed4 = PatchEmbed(
                patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])

        # class token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
        self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList([
            CBlock(
                dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
            for i in range(depth[0])])
        self.blocks2 = nn.ModuleList([
            CBlock(
                dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
            for i in range(depth[1])])
        self.blocks3 = nn.ModuleList([
            EvoSABlock(
                dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
                prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
                downsample=True if i == depth[2] - 1 else False)
            for i in range(depth[2])])
        self.blocks4 = nn.ModuleList([
            EvoSABlock(
                dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
                prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
        for i in range(depth[3])])
        self.norm = nn.BatchNorm2d(embed_dim[-1])
        self.norm_cls = nn.LayerNorm(embed_dim[-1])
        
        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

        # Classifier head
        self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
        self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
        
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed1(x)
        x = self.pos_drop(x)
        for blk in self.blocks1:
            x = blk(x)
        x = self.patch_embed2(x)
        for blk in self.blocks2:
            x = blk(x)
        x = self.patch_embed3(x)
        # add cls_token in stage3
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        global global_attn, token_indices
        global_attn = 0
        token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
        token_indices = token_indices.expand(x.shape[0], -1)
        for blk in self.blocks3:
            cls_token, x = blk(cls_token, x)
        # upsample cls_token before stage4
        cls_token = self.cls_upsample(cls_token)
        x = self.patch_embed4(x)
        # whether reset global attention? Now simple avgpool
        token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
        token_indices = token_indices.expand(x.shape[0], -1)
        for blk in self.blocks4:
            cls_token, x = blk(cls_token, x)
        if self.training:
            # layer normalization for cls_token
            cls_token = self.norm_cls(cls_token)
        x = self.norm(x)
        x = self.pre_logits(x)
        return cls_token, x

    def forward(self, x):
        cls_token, x = self.forward_features(x)
        x = x.flatten(2).mean(-1)
        if self.training:
            x = self.head(x), self.head_cls(cls_token.squeeze(1))
        else:
            x = self.head(x)
        return x


def uniformer_xxs_image(**kwargs):
    model = UniFormer_Light(
        depth=[2, 5, 8, 2], conv_stem=True,
        prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
        trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
        embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
        **kwargs)
    model.default_cfg = _cfg()
    return model


def uniformer_xs_image(**kwargs):
    model = UniFormer_Light(
        depth=[3, 5, 9, 3], conv_stem=True,
        prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
        trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
        embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
        **kwargs)
    model.default_cfg = _cfg()
    return model


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    model = uniformer_xxs_image()
    # print(model)

    flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160))
    s = time.time()
    print(flop_count_table(flops, max_depth=1))
    print(time.time()-s)