Spaces:
Build error
Build error
init
Browse files- app.py +8 -2
- test_dark.ipynb +33 -0
- test_exposure.ipynb +0 -0
app.py
CHANGED
@@ -23,14 +23,17 @@ def dark_inference(img):
|
|
23 |
state_dict = torch.load(checkpoint_file_path, map_location='cpu')
|
24 |
model.load_state_dict(state_dict)
|
25 |
model.eval()
|
|
|
26 |
|
27 |
transform = Compose([
|
28 |
ToTensor(),
|
29 |
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
30 |
ConvertImageDtype(torch.float)
|
31 |
])
|
|
|
|
|
32 |
|
33 |
-
enhanced_img = model(
|
34 |
return enhanced_img[0].permute(1, 2, 0).detach().numpy()
|
35 |
|
36 |
|
@@ -40,13 +43,16 @@ def exposure_inference(img):
|
|
40 |
state_dict = torch.load(checkpoint_file_path, map_location='cpu')
|
41 |
model.load_state_dict(state_dict)
|
42 |
model.eval()
|
|
|
43 |
|
44 |
transform = Compose([
|
45 |
ToTensor(),
|
46 |
ConvertImageDtype(torch.float)
|
47 |
])
|
|
|
|
|
48 |
|
49 |
-
enhanced_img = model(
|
50 |
return enhanced_img[0].permute(1, 2, 0).detach().numpy()
|
51 |
|
52 |
|
|
|
23 |
state_dict = torch.load(checkpoint_file_path, map_location='cpu')
|
24 |
model.load_state_dict(state_dict)
|
25 |
model.eval()
|
26 |
+
print(f'Load model from {checkpoint_file_path}')
|
27 |
|
28 |
transform = Compose([
|
29 |
ToTensor(),
|
30 |
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
31 |
ConvertImageDtype(torch.float)
|
32 |
])
|
33 |
+
input_img = transform(img)
|
34 |
+
print(f'Image shape: {input_img.shape}')
|
35 |
|
36 |
+
enhanced_img = model(input_img.unsqueeze(0))
|
37 |
return enhanced_img[0].permute(1, 2, 0).detach().numpy()
|
38 |
|
39 |
|
|
|
43 |
state_dict = torch.load(checkpoint_file_path, map_location='cpu')
|
44 |
model.load_state_dict(state_dict)
|
45 |
model.eval()
|
46 |
+
print(f'Load model from {checkpoint_file_path}')
|
47 |
|
48 |
transform = Compose([
|
49 |
ToTensor(),
|
50 |
ConvertImageDtype(torch.float)
|
51 |
])
|
52 |
+
input_img = transform(img)
|
53 |
+
print(f'Image shape: {input_img.shape}')
|
54 |
|
55 |
+
enhanced_img = model(input_img.unsqueeze(0))
|
56 |
return enhanced_img[0].permute(1, 2, 0).detach().numpy()
|
57 |
|
58 |
|
test_dark.ipynb
CHANGED
@@ -246,6 +246,39 @@
|
|
246 |
"plt.imshow(enhanced_img[0].permute(1, 2, 0).detach().numpy())"
|
247 |
]
|
248 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
{
|
250 |
"cell_type": "code",
|
251 |
"execution_count": null,
|
|
|
246 |
"plt.imshow(enhanced_img[0].permute(1, 2, 0).detach().numpy())"
|
247 |
]
|
248 |
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 9,
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"def dark_inference(img_path):\n",
|
256 |
+
" model = IAT()\n",
|
257 |
+
" checkpoint_file_path = './checkpoint/best_Epoch_lol.pth'\n",
|
258 |
+
" state_dict = torch.load(checkpoint_file_path, map_location='cpu')\n",
|
259 |
+
" model.load_state_dict(state_dict)\n",
|
260 |
+
" model.eval()\n",
|
261 |
+
"\n",
|
262 |
+
" img = np.array(Image.open(img_path))\n",
|
263 |
+
" transform = Compose([\n",
|
264 |
+
" ToTensor(), \n",
|
265 |
+
" Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), \n",
|
266 |
+
" ConvertImageDtype(torch.float) \n",
|
267 |
+
" ])\n",
|
268 |
+
"\n",
|
269 |
+
" enhanced_img = model(transform(img).unsqueeze(0))\n",
|
270 |
+
" return enhanced_img[0].permute(1, 2, 0).detach().numpy()"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 10,
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"out = dark_inference('./dark_imgs/1.jpg')"
|
280 |
+
]
|
281 |
+
},
|
282 |
{
|
283 |
"cell_type": "code",
|
284 |
"execution_count": null,
|
test_exposure.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|