Spaces:
Running
on
T4
Running
on
T4
from ultralytics import YOLO | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import cv2 | |
import torch | |
# import queue | |
# import time | |
# from PIL import Image | |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model | |
def fast_process(annotations, image, high_quality, device): | |
if isinstance(annotations[0],dict): | |
annotations = [annotation['segmentation'] for annotation in annotations] | |
original_h = image.height | |
original_w = image.width | |
fig = plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
if high_quality == True: | |
if isinstance(annotations[0],torch.Tensor): | |
annotations = np.array(annotations.cpu()) | |
for i, mask in enumerate(annotations): | |
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) | |
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) | |
if device == 'cpu': | |
annotations = np.array(annotations) | |
fast_show_mask(annotations, | |
plt.gca(), | |
bbox=None, | |
points=None, | |
pointlabel=None, | |
retinamask=True, | |
target_height=original_h, | |
target_width=original_w) | |
else: | |
if isinstance(annotations[0],np.ndarray): | |
annotations = torch.from_numpy(annotations) | |
fast_show_mask_gpu(annotations, | |
plt.gca(), | |
bbox=None, | |
points=None, | |
pointlabel=None) | |
if isinstance(annotations, torch.Tensor): | |
annotations = annotations.cpu().numpy() | |
if high_quality == True: | |
contour_all = [] | |
temp = np.zeros((original_h, original_w,1)) | |
for i, mask in enumerate(annotations): | |
if type(mask) == dict: | |
mask = mask['segmentation'] | |
annotation = mask.astype(np.uint8) | |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours: | |
contour_all.append(contour) | |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) | |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8]) | |
contour_mask = temp / 225 * color.reshape(1, 1, -1) | |
plt.imshow(contour_mask) | |
plt.axis('off') | |
plt.tight_layout() | |
return fig | |
# CPU post process | |
def fast_show_mask(annotation, ax, bbox=None, | |
points=None, pointlabel=None, | |
retinamask=True, target_height=960, | |
target_width=960): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
# 将annotation 按照面积 排序 | |
areas = np.sum(annotation, axis=(1, 2)) | |
sorted_indices = np.argsort(areas)[::1] | |
annotation = annotation[sorted_indices] | |
index = (annotation != 0).argmax(axis=0) | |
color = np.random.random((msak_sum,1,1,3)) | |
transparency = np.ones((msak_sum,1,1,1)) * 0.6 | |
visual = np.concatenate([color,transparency],axis=-1) | |
mask_image = np.expand_dims(annotation,-1) * visual | |
show = np.zeros((height,weight,4)) | |
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
show[h_indices, w_indices, :] = mask_image[indices] | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') | |
if retinamask==False: | |
show = cv2.resize(show,(target_width,target_height),interpolation=cv2.INTER_NEAREST) | |
ax.imshow(show) | |
def fast_show_mask_gpu(annotation, ax, | |
bbox=None, points=None, | |
pointlabel=None): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
areas = torch.sum(annotation, dim=(1, 2)) | |
sorted_indices = torch.argsort(areas, descending=False) | |
annotation = annotation[sorted_indices] | |
# 找每个位置第一个非零值下标 | |
index = (annotation != 0).to(torch.long).argmax(dim=0) | |
color = torch.rand((msak_sum,1,1,3)).to(annotation.device) | |
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6 | |
visual = torch.cat([color,transparency],dim=-1) | |
mask_image = torch.unsqueeze(annotation,-1) * visual | |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 | |
show = torch.zeros((height,weight,4)).to(annotation.device) | |
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
show[h_indices, w_indices, :] = mask_image[indices] | |
show_cpu = show.cpu().numpy() | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') | |
ax.imshow(show_cpu) | |
# # 建立请求队列和线程同步锁 | |
# request_queue = queue.Queue(maxsize=10) | |
# lock = queue.Queue() | |
def predict(input, input_size=512, high_visual_quality=True): | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
input_size = int(input_size) # 确保 imgsz 是整数 | |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
fig = fast_process(annotations=results[0].masks.data, | |
image=input, high_quality=high_visual_quality, device=device) | |
return fig | |
# # 将耗时的函数包装在另一个函数中,用于控制队列和线程同步 | |
# def process_request(): | |
# while True: | |
# if not request_queue.empty(): | |
# # 如果请求队列不为空,则处理该请求 | |
# try: | |
# lock.put(1) # 加锁,防止同时处理多个请求 | |
# input_package = request_queue.get() | |
# fig = predict(input_package) | |
# request_queue.task_done() # 请求处理结束,移除请求 | |
# lock.get() # 解锁 | |
# yield fig # 返回预测结果 | |
# except: | |
# lock.get() # 出错时也需要解锁 | |
# else: | |
# # 如果请求队列为空,则等待新的请求到达 | |
# time.sleep(1) | |
# input_size=1024 | |
# high_quality_visual=True | |
# inp = 'assets/sa_192.jpg' | |
# input = Image.open(inp) | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# input_size = int(input_size) # 确保 imgsz 是整数 | |
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
# pil_image = fast_process(annotations=results[0].masks.data, | |
# image=input, high_quality=high_quality_visual, device=device) | |
app_interface = gr.Interface(fn=predict, | |
inputs=[gr.components.Image(type='pil'), | |
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64), | |
gr.components.Checkbox(value=True)], | |
outputs=['plot'], | |
# examples=[["assets/sa_8776.jpg", 1024, True]], | |
# ["assets/sa_1309.jpg", 1024]], | |
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
cache_examples=False, | |
title="Fast Segment Anthing (Everything mode)" | |
) | |
# # 定义一个请求处理函数,将请求添加到队列中 | |
# def handle_request(value): | |
# try: | |
# request_queue.put_nowait(value) # 添加请求到队列 | |
# except: | |
# return "当前队列已满,请稍后再试!" | |
# return None | |
# # 添加请求处理函数到应用程序界面 | |
# app_interface.add_transition("submit", handle_request) | |
app_interface.queue(concurrency_count=2) | |
app_interface.launch() |