File size: 1,945 Bytes
652da5f a17f44d 8db18be f4b6c0f 7966d73 bf8dbf8 7966d73 968d7d4 3b29ea6 968d7d4 7966d73 d84a343 d19b7e2 49417b7 7966d73 427c414 7966d73 a17f44d 7966d73 afc65e5 c092dcd 7966d73 97aefd6 1799bf5 7966d73 1799bf5 5ee6f5d 48d04ca 7966d73 bd22ac4 7966d73 ccb90bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
#---------------------AI Paraphraser - iFrame code --------------
import transformers
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
def paraphrase(
Content_to_Rephrase,
num_beams: 3,
num_return_sequences=3,
):
input_ids = tokenizer(
f'paraphrase: {Content_to_Rephrase}',
return_tensors="pt", padding="longest",
).input_ids
outputs = model.generate(input_ids, num_beams=num_beams, num_return_sequences=num_return_sequences)
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
res1 = res [0]
res2 = res [1]
res3 = res [2]
return res1, res2, res3
output1 = gr.Textbox(label="Rephrased: Option 1")
output2 = gr.Textbox(label="Rephrased: Option 2")
output3 = gr.Textbox(label="Rephrased: Option 3")
input = gr.Textbox(lines=10)
iface = gr.Interface(fn=paraphrase,
inputs=[input],
outputs=[output1, output2, output3],
title="Free AI Sentence Rephraser",
description="<ul><li>Paste text in the input box and press 'Submit'.</li><li>Max length: ~35 words (larger content is summarized)</li><li>The rephrased sentences *may not* be better than the original input.</li><li>Model 'humarin' pre-trained by ChatGPT. Temp = 0.7</li></ul>",
examples=[
["With the humble is wisdom."],
["Hatred stirs up strife."],
["The way of a fool is right in his own eyes."],
["Righteousness leads to life."],
],
cache_examples=True,
)
iface.launch() |