File size: 2,302 Bytes
7966d73
 
 
bf8dbf8
8db18be
f4b6c0f
7966d73
bf8dbf8
 
7966d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb90bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#---------------------AI Paraphraser - iFrame code -----------------------------
# With direct model load
#----------------------------------------------------------------


import transformers
import gradio as gr
import torch

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")

def paraphrase(
    question,
    num_beams=5,
    num_beam_groups=5,
    num_return_sequences=5,
    repetition_penalty=10.0,
    diversity_penalty=3.0,
    no_repeat_ngram_size=2,
    temperature=0.7,
    max_length=128
):
    input_ids = tokenizer(
        f'paraphrase: {question}',
        return_tensors="pt", padding="longest",
        max_length=max_length,
        truncation=True,
    ).input_ids
    
    outputs = model.generate(
        input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
        num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
        num_beams=num_beams, num_beam_groups=num_beam_groups,
        max_length=max_length, diversity_penalty=diversity_penalty
    )

    res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    res1 = res [0]
    res2 = res [1]
    res3 = res [3]
    res4 = res [4]
    
    return res1, res2, res3


iface = gr.Interface(fn=paraphrase, 
                     inputs=["text"],
                     outputs=["text","text","text"],
                     title="AI Paraphraser", 
                     description="Paste text in the input box and press 'Submit'. The output need not be better than the original.",
                     examples=[
                                ["Therefore, when we share we need to create real hype for users to want to be involved."],
                                ["Ideas like this I am open to your suggestions, so we can really push through."],
                                ["The main goal is for readers/users to feel the need to purchase the product."],
                                ["The weather is getting more and more unpredictable these days."],
                              ],
                     cache_examples=True,
                    )

iface.launch()