Spaces:
Runtime error
Runtime error
File size: 96,613 Bytes
ee0a63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 |
import torch
import torch.nn as nn
import torch.nn.functional as F # Added for activation functions
import numpy as np
from dataclasses import dataclass, field
import pygame
import gradio as gr
from typing import List, Tuple, Dict, Optional, Set
import random
import colorsys
import pymunk
import time
import threading
from queue import Queue
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from PIL import Image
import io
import logging # Added for logging
# ==============================
# Logging Configuration
# ==============================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.FileHandler("simulation.log"),
logging.StreamHandler()
]
)
# ==============================
# Configuration Dataclasses
# ==============================
@dataclass
class SimulationConfig:
WIDTH: int = 1024
HEIGHT: int = 768
TARGET_FPS: int = 60
MIN_ORGANISMS: int = 5
MAX_ORGANISMS: int = 50 # Population cap set to 50
MUTATION_RATE: float = 0.1
REPRODUCTION_ENERGY: float = 150.0
INITIAL_ENERGY: float = 100.0
BRAIN_UPDATE_RATE: int = 10 # Hz
MAX_NEURONS: int = 1000
ENERGY_DECAY: float = 0.1
@dataclass
class NeuronState:
activation: float = 0.0
connections: int = 0
energy: float = 100.0
memory: List[float] = field(default_factory=lambda: [0.0] * 8)
@dataclass
class VisualizationConfig:
BACKGROUND_COLOR: Tuple[int, int, int] = (10, 10, 30)
NEURON_COLORS: Dict[str, Tuple[int, int, int]] = field(default_factory=lambda: {
'active': (255, 255, 0),
'inactive': (100, 100, 100),
'connected': (0, 255, 255)
})
CONNECTION_COLOR: Tuple[int, int, int, int] = (50, 50, 200, 100)
ENERGY_COLOR: Tuple[int, int, int] = (0, 255, 0)
MAX_NEURAL_CONNECTIONS: int = 50
@dataclass
class PhysicsConfig:
COLLISION_TYPE_ORGANISM: int = 1
ELASTICITY: float = 0.7
FRICTION: float = 0.5
DAMPING: float = 0.9
INTERACTION_RADIUS: float = 50.0
FORCE_SCALE: float = 100.0
# ==============================
# Neural Processing System
# ==============================
class FractalNeuron(nn.Module):
def __init__(self, input_dim=16, output_dim=16, depth=0, max_depth=2):
super().__init__()
self.depth = depth
self.max_depth = max_depth
# Store dimensions
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dim = max(input_dim // 2, 8) # Add explicit hidden_dim
# Enhanced neural processing layers with LeakyReLU
self.synapse = nn.Sequential(
nn.Linear(input_dim, self.hidden_dim), # First layer: input_dim to hidden_dim
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Linear(self.hidden_dim, output_dim), # Second layer: hidden_dim to output_dim
nn.Tanh()
)
# Initialize weights using Xavier uniform initialization
for layer in self.synapse:
if isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
nn.init.constant_(layer.bias, 0.0)
# Set to eval mode to prevent BatchNorm issues
self.eval()
# State maintenance with bounded values
self.state = NeuronState()
self.state.activation = 0.0
self.state.energy = min(100.0, max(0.0, self.state.energy))
# Memory processing with correct dimensions
self.memory_gate = nn.Sequential(
nn.Linear(output_dim + 8, 8),
nn.Sigmoid()
)
# Initialize memory_gate weights
for layer in self.memory_gate:
if isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
nn.init.constant_(layer.bias, 0.0)
# Child neurons with matching dimensions
self.sub_neurons = nn.ModuleList([])
if depth < max_depth:
branching_factor = max(1, 2 - depth)
for _ in range(branching_factor):
child = FractalNeuron(
input_dim=output_dim, # Child's input_dim matches parent's output_dim
output_dim=output_dim, # Keep output_dim consistent
depth=depth + 1,
max_depth=max_depth
)
self.sub_neurons.append(child)
def forward(self, x):
"""Forward pass for PyTorch module compatibility"""
return self.process_signal(x)
def process_signal(self, x, external_input=None):
"""Process input signal through the neuron"""
try:
with torch.no_grad():
# Ensure we're in eval mode
self.eval()
# Reshape input for processing
if len(x.shape) == 1:
x = x.unsqueeze(0) # Add batch dimension
# Check for NaNs in input
if torch.isnan(x).any():
logging.warning("NaN detected in input tensor. Returning zero tensor.")
return torch.zeros(self.output_dim)
# Add external input if provided
if external_input is not None:
if len(external_input.shape) == 1:
external_input = external_input.unsqueeze(0)
x = torch.cat([x, external_input], dim=-1)
# Process through synapse with proper shapes
x = x.to(torch.float32) # Ensure float32 dtype
try:
x = self.synapse(x)
except RuntimeError as e:
logging.error(f"Error in synapse processing: {e}")
return torch.zeros(self.output_dim)
# Update memory with bounds checking
try:
memory_tensor = torch.tensor(self.state.memory).to(torch.float32)
if len(x.shape) == 1:
x_for_memory = x.unsqueeze(0)
else:
x_for_memory = x
memory_input = torch.cat([x_for_memory, memory_tensor.unsqueeze(0)], dim=-1)
new_memory = self.memory_gate(memory_input)
new_memory = torch.clamp(new_memory, 0.0, 1.0)
if not torch.isnan(new_memory).any():
self.state.memory = new_memory[0].tolist()
except Exception as e:
logging.error(f"Error updating memory: {e}")
# Update activation with bounded value
activation = float(torch.clamp(x.mean(), -1.0, 1.0))
if not np.isnan(activation):
self.state.activation = activation
# Process through children with error handling
if self.sub_neurons:
child_outputs = []
for child in self.sub_neurons:
try:
# Ensure x has correct shape before passing to child
child_input = x.squeeze(0) if len(x.shape) == 2 else x
# Ensure input matches child's expected input dimension
if child_input.shape[-1] != child.input_dim:
child_input = child_input[:child.input_dim]
child_out = child.process_signal(child_input)
if not torch.isnan(child_out).any():
# Ensure child output has correct shape for stacking
if len(child_out.shape) == 1:
child_out = child_out.unsqueeze(0)
child_outputs.append(child_out)
except Exception as e:
logging.error(f"Error in child neuron processing: {e}")
continue
if child_outputs:
child_outputs = torch.stack(child_outputs)
x = torch.mean(child_outputs, dim=0)
x = torch.clamp(x, -1.0, 1.0)
# Update energy with bounds
energy_cost = 0.1 * self.depth
self.state.energy = max(0.0, min(100.0, self.state.energy - energy_cost))
# Remove batch dimension if it was added
if len(x.shape) == 2:
x = x.squeeze(0)
return x
except Exception as e:
logging.error(f"Error in process_signal: {e}")
return torch.zeros(self.output_dim)
def interact_with(self, other_neuron, strength=0.5):
"""Interact with another neuron"""
try:
# Bound strength value
strength = max(0.0, min(1.0, strength))
# Share neural states with bounds
shared_activation = (self.state.activation + other_neuron.state.activation) / 2
shared_activation = float(shared_activation)
if np.isnan(shared_activation):
logging.warning("NaN detected in shared activation. Using default value.")
shared_activation = 0.0
self.state.activation = shared_activation
other_neuron.state.activation = shared_activation
# Share memories with bounds checking
shared_memory = []
for a, b in zip(self.state.memory, other_neuron.state.memory):
shared_value = (float(a) + float(b)) / 2
shared_value = max(0.0, min(1.0, shared_value))
shared_memory.append(shared_value)
self.state.memory = shared_memory
other_neuron.state.memory = shared_memory
# Update connections with bounds
max_connections = 100
self.state.connections = min(self.state.connections + 1, max_connections)
other_neuron.state.connections = min(other_neuron.state.connections + 1, max_connections)
return shared_activation
except Exception as e:
logging.error(f"Error in interact_with: {e}")
return 0.0
def save_state(self):
"""Save the current state of the neuron"""
return {
'activation': self.state.activation,
'connections': self.state.connections,
'energy': self.state.energy,
'memory': self.state.memory.copy()
}
def load_state(self, state_dict):
"""Load a previously saved state"""
try:
self.state.activation = state_dict['activation']
self.state.connections = state_dict['connections']
self.state.energy = state_dict['energy']
self.state.memory = state_dict['memory'].copy()
except Exception as e:
logging.error(f"Error loading neuron state: {e}")
def clone(self):
"""Create a deep copy of the neuron"""
try:
new_neuron = FractalNeuron(
input_dim=self.input_dim,
output_dim=self.output_dim,
depth=self.depth,
max_depth=self.max_depth
)
new_neuron.load_state(self.save_state())
return new_neuron
except Exception as e:
logging.error(f"Error cloning neuron: {e}")
return None
def mutate(self, mutation_rate=0.1):
"""Apply random mutations to the neuron"""
try:
with torch.no_grad():
# Mutate weights
for layer in self.synapse:
if isinstance(layer, nn.Linear):
mask = torch.rand_like(layer.weight) < mutation_rate
mutations = torch.randn_like(layer.weight) * 0.1
layer.weight.data[mask] += mutations[mask]
if layer.bias is not None:
mask = torch.rand_like(layer.bias) < mutation_rate
mutations = torch.randn_like(layer.bias) * 0.1
layer.bias.data[mask] += mutations[mask]
# Mutate memory gate
for layer in self.memory_gate:
if isinstance(layer, nn.Linear):
mask = torch.rand_like(layer.weight) < mutation_rate
mutations = torch.randn_like(layer.weight) * 0.1
layer.weight.data[mask] += mutations[mask]
if layer.bias is not None:
mask = torch.rand_like(layer.bias) < mutation_rate
mutations = torch.randn_like(layer.bias) * 0.1
layer.bias.data[mask] += mutations[mask]
# Recursively mutate child neurons
for child in self.sub_neurons:
child.mutate(mutation_rate)
except Exception as e:
logging.error(f"Error mutating neuron: {e}")
class FractalBrain:
def __init__(self, input_dim=32, hidden_dim=64, max_neurons=1000):
self.input_dim = min(input_dim, 32) # Limit input dimension
self.hidden_dim = min(hidden_dim, 64) # Limit hidden dimension
self.max_neurons = min(max_neurons, 1000) # Limit maximum neurons
# Core neural network components with reduced complexity
self.visual_cortex = FractalNeuron(self.input_dim, self.hidden_dim, max_depth=2)
self.thought_processor = FractalNeuron(self.hidden_dim, self.hidden_dim, max_depth=2)
self.action_generator = FractalNeuron(self.hidden_dim, self.input_dim, max_depth=2)
# State tracking with bounds
self.total_neurons = self.count_neurons()
self.total_energy = 100.0 # Reduced initial energy
self.memories = []
self.current_vision = None
def get_vitals(self):
"""Get vital statistics of the brain with safety checks"""
try:
# Calculate average activation safely
activations = []
for neuron in [self.visual_cortex, self.thought_processor, self.action_generator]:
try:
activation = float(neuron.state.activation)
if not np.isnan(activation) and not np.isinf(activation):
activations.append(activation)
except (AttributeError, ValueError, TypeError):
activations.append(0.0)
avg_activation = sum(activations) / max(len(activations), 1)
avg_activation = max(-1.0, min(1.0, avg_activation))
# Get connection counts safely
connections = []
for neuron in [self.visual_cortex, self.thought_processor, self.action_generator]:
try:
conn_count = int(neuron.state.connections)
if not np.isnan(conn_count) and not np.isinf(conn_count):
connections.append(conn_count)
except (AttributeError, ValueError, TypeError):
connections.append(0)
total_connections = sum(connections)
return {
'neurons': min(self.total_neurons, self.max_neurons),
'energy': max(0.0, min(1000.0, float(self.total_energy))),
'connections': max(0, min(1000, total_connections)),
'activation': avg_activation
}
except Exception as e:
logging.error(f"Exception in get_vitals: {e}. Returning default vitals.")
# Return safe default values if anything goes wrong
return {
'neurons': 1,
'energy': 0.0,
'connections': 0,
'activation': 0.0
}
def process_vision(self, visual_input):
try:
with torch.no_grad():
# Ensure input is valid and properly shaped
visual_input = visual_input.clone().detach()
if len(visual_input.shape) == 1:
visual_input = visual_input.unsqueeze(0) # Add batch dimension
if torch.isnan(visual_input).any():
logging.warning("NaN detected in visual_input. Replacing with zeros.")
visual_input = torch.zeros_like(visual_input)
visual_input = torch.clamp(visual_input, -10.0, 10.0)
# Process through neural components with shape handling
try:
visual_features = self.visual_cortex.process_signal(visual_input)
if len(visual_features.shape) == 1:
visual_features = visual_features.unsqueeze(0)
except Exception as e:
logging.error(f"Exception in visual_cortex.process_signal: {e}. Using zero tensor.")
visual_features = torch.zeros((1, self.hidden_dim))
try:
thoughts = self.thought_processor.process_signal(visual_features)
if len(thoughts.shape) == 1:
thoughts = thoughts.unsqueeze(0)
except Exception as e:
logging.error(f"Exception in thought_processor.process_signal: {e}. Using zero tensor.")
thoughts = torch.zeros((1, self.hidden_dim))
try:
actions = self.action_generator.process_signal(thoughts)
except Exception as e:
logging.error(f"Exception in action_generator.process_signal: {e}. Using zero tensor.")
actions = torch.zeros(self.input_dim)
# Remove batch dimension from final output if present
if len(actions.shape) > 1:
actions = actions.squeeze(0)
# Ensure outputs are bounded
actions = torch.clamp(actions, -1.0, 1.0)
# Energy consumption with bounds
self.total_energy = max(0.0, min(1000.0, self.total_energy - 0.1))
return actions
except Exception as e:
logging.error(f"Exception in process_vision: {e}. Returning zero actions.")
return torch.zeros(self.input_dim)
def interact_with(self, other_brain, strength=0.5):
try:
# Bound strength value
strength = max(0.0, min(1.0, strength))
# Neural interactions with error handling
shared_visual = self.visual_cortex.interact_with(other_brain.visual_cortex, strength)
shared_thoughts = self.thought_processor.interact_with(other_brain.thought_processor, strength)
shared_actions = self.action_generator.interact_with(other_brain.action_generator, strength)
# Energy transfer with bounds
energy_diff = self.total_energy - other_brain.total_energy
transfer = max(-10.0, min(10.0, energy_diff * 0.1))
self.total_energy = max(0.0, min(1000.0, self.total_energy - transfer))
other_brain.total_energy = max(0.0, min(1000.0, other_brain.total_energy + transfer))
return shared_visual, shared_thoughts, shared_actions
except Exception as e:
logging.error(f"Exception in interact_with: {e}. Returning zeros.")
return 0.0, 0.0, 0.0
def count_neurons(self):
"""Safely count neurons with error handling"""
try:
def count_recursive(module):
count = 1
if hasattr(module, 'sub_neurons'):
for child in module.sub_neurons:
count += count_recursive(child)
return min(count, self.max_neurons) # Limit total count
total = sum(count_recursive(x) for x in [
self.visual_cortex,
self.thought_processor,
self.action_generator
])
return min(total, self.max_neurons)
except Exception as e:
logging.error(f"Exception in count_neurons: {e}. Returning 1.")
return 1 # Return minimum count if counting fails
def can_grow(self):
"""Check if brain can grow new neurons"""
return (self.total_neurons < self.max_neurons and
self.total_energy > 100.0)
# ==============================
# Organism Definition and Behavior
# ==============================
class FractalOrganism:
def __init__(self, x, y, size=20, feature_dim=32, max_neurons=1000):
# Physical properties
self.pos = pygame.math.Vector2(x, y)
self.vel = pygame.math.Vector2(0, 0)
self.acc = pygame.math.Vector2(0, 0)
self.size = size
self.mass = size * 0.1
# Neural system
self.brain = FractalBrain(input_dim=feature_dim, hidden_dim=feature_dim*2, max_neurons=max_neurons)
self.feature_dim = feature_dim
self.features = torch.randn(feature_dim)
# Visual properties with validation
self.color = self._features_to_color()
self.pattern_type = self._determine_pattern_type()
self.pattern_intensity = self._determine_pattern_intensity()
self.shape_points = self._generate_shape()
# Life properties
self.alive = True
self.age = 0
def _validate_color_component(self, value):
"""Ensure color component is a valid integer between 0 and 255"""
try:
value = int(value)
return max(0, min(255, value))
except (ValueError, TypeError):
return 0
def update(self, screen_width, screen_height, organisms):
"""Update organism state"""
if not self.alive:
return
try:
# Physics integration
# Update velocity with acceleration
self.vel += self.acc
# Apply friction/damping
self.vel *= 0.98 # Slight damping to prevent infinite movement
# Update position with velocity
self.pos += self.vel
# Clear acceleration for next frame
self.acc.x = 0
self.acc.y = 0
# Get visual input and process through brain
visual_input = self._get_visual_input(organisms)
actions = self.brain.process_vision(visual_input)
# Apply neural network outputs as forces if valid
if isinstance(actions, torch.Tensor) and not torch.isnan(actions).any():
self._apply_action_forces(actions)
# Wrap around screen edges
self.pos.x = self.pos.x % screen_width
self.pos.y = self.pos.y % screen_height
# Update life properties
self.age += 1
vitals = self.brain.get_vitals()
# Death conditions
if vitals['energy'] <= 0 or self.age > 1000:
self.alive = False
except Exception as e:
logging.error(f"Error updating organism {id(self)}: {e}")
logging.debug(f"Organism state - Age: {self.age}, Alive: {self.alive}")
def _get_visual_input(self, organisms):
"""Create visual input tensor from surroundings"""
try:
visual_input = torch.zeros(self.feature_dim)
# Add self-perception (first 3 features are color)
color_tensor = torch.tensor([c/255.0 for c in self.color])
visual_input[:3] = color_tensor[:3]
# Add velocity perception (helps with movement learning)
if hasattr(self, 'vel'):
velocity_magnitude = np.sqrt(self.vel.x**2 + self.vel.y**2)
velocity_direction = np.arctan2(self.vel.y, self.vel.x) / np.pi
if 3 < len(visual_input):
visual_input[3] = float(velocity_magnitude) / 10.0 # Normalize velocity
if 4 < len(visual_input):
visual_input[4] = float(velocity_direction)
# Add perception of nearby organisms
for other in organisms:
if other != self and other.alive:
distance = self.pos.distance_to(other.pos)
if distance < 100: # Visual range
direction = (other.pos - self.pos)
if direction.length() > 0:
direction = direction.normalize()
angle = np.arctan2(direction.y, direction.x)
# Map angle to feature index
idx = int((angle + np.pi) / (2 * np.pi) * (self.feature_dim - 5)) + 5
idx = min(max(5, idx), self.feature_dim - 1)
# Set feature value based on distance and target's properties
intensity = 1.0 - min(1.0, distance / 100)
visual_input[idx] = intensity
# Add information about target's energy level if visible
if idx + 1 < self.feature_dim:
target_energy = float(other.brain.total_energy) / 1000.0
if not np.isnan(target_energy):
visual_input[idx + 1] = target_energy
return visual_input
except Exception as e:
logging.error(f"Error in _get_visual_input: {e}")
return torch.zeros(self.feature_dim)
def _apply_action_forces(self, actions):
"""Convert neural actions to physical forces with better control"""
try:
if not isinstance(actions, torch.Tensor):
return
# Get first two action dimensions for movement control
if len(actions) >= 2:
# Scale force based on neural network activation
activation = float(self.brain.visual_cortex.state.activation)
force_scale = 20.0 # Increased for more visible movement
# Convert actions to directional movement
force_x = float(actions[0].item()) * force_scale * (1 + abs(activation))
force_y = float(actions[1].item()) * force_scale * (1 + abs(activation))
# Add some randomness for exploration when activation is low
if abs(activation) < 0.2:
force_x += random.uniform(-2.0, 2.0) # Increased random movement
force_y += random.uniform(-2.0, 2.0)
# Clamp forces but allow for stronger movement
max_force = 40.0 # Increased maximum force
force_x = max(-max_force, min(max_force, force_x))
force_y = max(-max_force, min(max_force, force_y))
# Apply the forces
self.apply_force((force_x, force_y))
# Additional actions for other behaviors
if len(actions) >= 4:
try:
# Action 3: Energy usage control
energy_control = float(actions[2].item())
if energy_control > 0.8:
self.brain.total_energy += energy_control * 0.1
# Action 4: Interaction strength
interaction_strength = max(0, min(1, float(actions[3].item())))
if not hasattr(self, 'interaction_strength'):
self.__dict__['interaction_strength'] = interaction_strength
else:
self.interaction_strength = interaction_strength
except Exception as e:
logging.error(f"Error processing additional actions: {e}")
except Exception as e:
logging.error(f"Error in _apply_action_forces: {e}")
def apply_force(self, force):
"""Apply physics force with validation"""
try:
if isinstance(force, (tuple, list)) and len(force) >= 2:
fx = float(force[0])
fy = float(force[1])
# Check for NaN
if np.isnan(fx) or np.isnan(fy):
return
# Limit maximum force
max_force = 10.0
fx = max(-max_force, min(max_force, fx))
fy = max(-max_force, min(max_force, fy))
force = pygame.math.Vector2(fx, fy)
# Validate acceleration before applying
new_acc = force / self.mass
if not (np.isnan(new_acc.x) or np.isnan(new_acc.y)):
self.acc.update(new_acc.x, new_acc.y)
# Clamp acceleration
max_acc = 5.0
self.acc.x = max(-max_acc, min(max_acc, self.acc.x))
self.acc.y = max(-max_acc, min(max_acc, self.acc.y))
except Exception as e:
logging.error(f"Error in apply_force: {e}")
def _features_to_color(self):
"""Convert feature vector to RGB color with validation"""
try:
r = self._validate_color_component((self.features[0].item() + 1) / 2 * 255)
g = self._validate_color_component((self.features[1].item() + 1) / 2 * 255)
b = self._validate_color_component((self.features[2].item() + 1) / 2 * 255)
return (r, g, b)
except (IndexError, AttributeError) as e:
logging.error(f"Error in _features_to_color: {e}. Defaulting to (100, 100, 100).")
return (100, 100, 100)
def _determine_pattern_type(self):
"""Determine pattern type based on specific features"""
try:
# Use features 3 and 4 to determine pattern type safely
if len(self.features) >= 5:
feature_sum = float(self.features[3].item() + self.features[4].item())
if feature_sum > 1:
return 'stripes'
elif feature_sum < -1:
return 'spots'
else:
return 'gradient'
return 'gradient' # Default pattern
except (IndexError, AttributeError, ValueError) as e:
logging.error(f"Error in _determine_pattern_type: {e}. Defaulting to 'gradient'.")
return 'gradient' # Fallback pattern
def _determine_pattern_intensity(self):
"""Determine pattern intensity based on specific features"""
try:
if len(self.features) >= 6:
intensity = (float(self.features[5].item()) + 1) / 2
return max(0.0, min(1.0, intensity))
return 0.5 # Default intensity
except (IndexError, AttributeError, ValueError) as e:
logging.error(f"Error in _determine_pattern_intensity: {e}. Defaulting to 0.5.")
return 0.5 # Fallback intensity
def _generate_shape(self):
"""Generate a polygon shape based on the pattern type"""
try:
points = []
if self.pattern_type == 'stripes':
# Generate a star-like shape with protrusions
for angle in range(0, 360, 30):
rad = np.radians(angle)
x = self.size * np.cos(rad)
y = self.size * np.sin(rad)
# Alternate between outer and inner points for stripes
if (angle // 30) % 2 == 0:
points.append((x * 1.2, y * 1.2))
else:
points.append((x * 0.8, y * 0.8))
elif self.pattern_type == 'spots':
# Generate a more circular, smooth shape with bulges
for angle in range(0, 360, 45):
rad = np.radians(angle)
x = self.size * (1 + 0.3 * np.sin(4 * rad)) * np.cos(rad)
y = self.size * (1 + 0.3 * np.sin(4 * rad)) * np.sin(rad)
points.append((x, y))
else: # 'gradient' or other patterns
# Simple regular polygon
for angle in range(0, 360, 60):
rad = np.radians(angle)
x = self.size * np.cos(rad)
y = self.size * np.sin(rad)
points.append((x, y))
# Validate points and ensure we have at least a triangle
if len(points) < 3:
# Fallback to basic triangle
points = [
(-self.size, -self.size),
(self.size, -self.size),
(0, self.size)
]
return points
except Exception as e:
logging.error(f"Error in _generate_shape: {e}. Defaulting to basic triangle.")
# Fallback to basic triangle if anything goes wrong
return [
(-self.size, -self.size),
(self.size, -self.size),
(0, self.size)
]
def reproduce(self, mate, mutation_rate=0.1):
"""Reproduce with another organism to create a child organism with possible mutations"""
try:
# Check reproduction energy requirements
if not hasattr(self.brain, 'REPRODUCTION_ENERGY'):
self.brain.REPRODUCTION_ENERGY = 150.0 # Default value if not set
if self.brain.total_energy < self.brain.REPRODUCTION_ENERGY or mate.brain.total_energy < mate.brain.REPRODUCTION_ENERGY:
return None
# Deduct energy for reproduction
self.brain.total_energy -= 50.0
mate.brain.total_energy -= 50.0
# Blend features
child_features = (self.features + mate.features) / 2
# Apply mutations
for i in range(len(child_features)):
if random.random() < mutation_rate:
child_features[i] += random.uniform(-0.1, 0.1)
# Clamp mutated features to prevent extreme values
child_features = torch.clamp(child_features, -1.0, 1.0)
# Create child organism
child = FractalOrganism(
x=(self.pos.x + mate.pos.x) / 2 + random.uniform(-10, 10),
y=(self.pos.y + mate.pos.y) / 2 + random.uniform(-10, 10),
size=self.size,
feature_dim=self.feature_dim,
max_neurons=self.brain.max_neurons
)
child.features = child_features
child.color = child._features_to_color()
child.pattern_type = child._determine_pattern_type()
child.pattern_intensity = child._determine_pattern_intensity()
child.shape_points = child._generate_shape()
child.brain = self._mutate_brain(mate.brain, mutation_rate)
return child
except Exception as e:
logging.error(f"Error in reproduction: {e}")
return None
def _mutate_brain(self, brain, mutation_rate):
"""Mutate the brain's neurons"""
try:
# For simplicity, we can randomly add connections or adjust activation
# Here, we'll randomly adjust activation levels
brain.visual_cortex.state.activation += random.uniform(-0.1, 0.1)
brain.thought_processor.state.activation += random.uniform(-0.1, 0.1)
brain.action_generator.state.activation += random.uniform(-0.1, 0.1)
# Ensure activations stay in valid range
brain.visual_cortex.state.activation = max(-1.0, min(1.0, brain.visual_cortex.state.activation))
brain.thought_processor.state.activation = max(-1.0, min(1.0, brain.thought_processor.state.activation))
brain.action_generator.state.activation = max(-1.0, min(1.0, brain.action_generator.state.activation))
return brain
except Exception as e:
logging.error(f"Error in brain mutation: {e}. Returning unmutated brain.")
return brain
def interact_with(self, other):
"""Interact with another organism"""
try:
distance = self.pos.distance_to(other.pos)
if distance < self.size + other.size:
# Neural interaction
interaction_strength = 1.0 - distance / (self.size + other.size)
self.brain.interact_with(other.brain, interaction_strength)
# Physical interaction (simple collision)
direction = (self.pos - other.pos).normalize()
force = direction * interaction_strength * 5
self.apply_force(force)
other.apply_force(-force)
return True
return False
except Exception as e:
logging.error(f"Error in organism interaction: {e}")
return False
def _blend_patterns(self, pattern1: str, pattern2: str) -> str:
"""Blend two pattern types to create a new pattern type"""
try:
if pattern1 == pattern2:
return pattern1
else:
# Simple blending logic: randomly choose one of the parent patterns or a new pattern
return random.choice([pattern1, pattern2, 'stripes', 'spots', 'gradient'])
except Exception as e:
logging.error(f"Error in _blend_patterns: {e}. Defaulting to 'gradient'.")
return 'gradient' # Default pattern if anything goes wrong
# ==============================
# Physics and Interaction Handling
# ==============================
class PhysicsEngine:
def __init__(self, width: int, height: int, config: PhysicsConfig):
self.config = config
# Initialize pymunk space
self.space = pymunk.Space()
self.space.damping = self.config.DAMPING
# Create boundaries
self.create_boundaries(width, height)
# Collision handler for organisms
handler = self.space.add_collision_handler(
self.config.COLLISION_TYPE_ORGANISM,
self.config.COLLISION_TYPE_ORGANISM
)
handler.begin = self.handle_collision
# Track interactions
self.current_interactions: Set[tuple] = set()
# Store dimensions
self.width = width
self.height = height
def update(self, dt: float):
"""Update physics simulation"""
try:
# Pymunk works best with a fixed time step
fixed_dt = 1.0 / 60.0
steps = max(1, min(4, int(dt / fixed_dt))) # Limit max steps to prevent spiral
for _ in range(steps):
self.space.step(fixed_dt)
# Update organism positions from physics bodies
for body in self.space.bodies:
if hasattr(body, 'organism'):
try:
organism = body.organism
# Validate positions
if not (np.isnan(body.position.x) or np.isnan(body.position.y)):
new_x = float(body.position.x % self.width)
new_y = float(body.position.y % self.height)
# Update pygame Vector2 position
organism.pos.update(new_x, new_y)
else:
# Reset to center if NaN
body.position = self.width/2, self.height/2
organism.pos.update(self.width/2, self.height/2)
# Validate velocities
if not (np.isnan(body.velocity.x) or np.isnan(body.velocity.y)):
max_velocity = 200.0
vx = max(-max_velocity, min(max_velocity, body.velocity.x))
vy = max(-max_velocity, min(max_velocity, body.velocity.y))
# Update pygame Vector2 velocity
organism.vel.update(vx, vy)
else:
body.velocity = (0, 0)
organism.vel.update(0, 0)
except Exception as e:
logging.error(f"Error updating organism physics state: {e}")
# Reset body to safe state
body.position = self.width/2, self.height/2
body.velocity = (0, 0)
try:
organism.pos.update(self.width/2, self.height/2)
organism.vel.update(0, 0)
except:
pass
except Exception as e:
logging.error(f"Error updating physics: {e}")
def create_boundaries(self, width: int, height: int):
"""Create screen boundaries"""
try:
walls = [
[(0, 0), (width, 0)], # Top
[(width, 0), (width, height)], # Right
[(width, height), (0, height)], # Bottom
[(0, height), (0, 0)] # Left
]
for wall in walls:
shape = pymunk.Segment(self.space.static_body, wall[0], wall[1], 0)
shape.elasticity = self.config.ELASTICITY
shape.friction = self.config.FRICTION
self.space.add(shape)
except Exception as e:
logging.error(f"Error creating boundaries: {e}")
def add_organism(self, organism: FractalOrganism) -> pymunk.Body:
"""Add organism to physics space"""
try:
# Validate mass
mass = max(0.1, organism.mass) # Ensure positive mass
moment = pymunk.moment_for_circle(mass, 0, organism.size)
body = pymunk.Body(mass, moment)
# Validate initial position and velocity
body.position = (
float(organism.pos.x % self.width),
float(organism.pos.y % self.height)
)
# Clamp initial velocity
max_initial_velocity = 50.0
vel_x = max(-max_initial_velocity, min(max_initial_velocity, organism.vel.x))
vel_y = max(-max_initial_velocity, min(max_initial_velocity, organism.vel.y))
body.velocity = (vel_x, vel_y)
# Validate shape points and create polygon
valid_vertices = []
for x, y in organism.shape_points:
if not (np.isnan(x) or np.isnan(y)):
valid_vertices.append((float(x), float(y)))
# If insufficient valid vertices, create default circle shape
if len(valid_vertices) < 3:
logging.warning(f"Insufficient valid vertices for organism {id(organism)}, using circle shape")
shape = pymunk.Circle(body, organism.size)
else:
shape = pymunk.Poly(body, valid_vertices)
shape.elasticity = self.config.ELASTICITY
shape.friction = self.config.FRICTION
shape.collision_type = self.config.COLLISION_TYPE_ORGANISM
# Store reference to organism
shape.organism = organism
body.organism = organism
self.space.add(body, shape)
return body
except Exception as e:
logging.error(f"Error adding organism to physics: {e}")
return None
def handle_collision(self, arbiter, space, data):
"""Handle collision between organisms"""
try:
# Get colliding organisms
shape_a, shape_b = arbiter.shapes
org_a, org_b = shape_a.organism, shape_b.organism
# Add to interaction set
interaction_pair = tuple(sorted([id(org_a), id(org_b)]))
self.current_interactions.add(interaction_pair)
# Calculate collision response with validation
restitution = max(0, min(1, self.config.ELASTICITY))
j = -(1 + restitution) * arbiter.total_ke / 2
# Validate impulse
if not np.isnan(j):
# Clamp impulse to prevent extreme values
max_impulse = 1000.0
j = max(-max_impulse, min(max_impulse, j))
body_a = shape_a.body
body_b = shape_b.body
normal = arbiter.normal
point = arbiter.contact_point_set.points[0].point_a
# Apply impulse along the collision normal
body_a.apply_impulse_at_world_point(j * normal, point)
body_b.apply_impulse_at_world_point(-j * normal, point)
return True
except Exception as e:
logging.error(f"Error handling collision: {e}")
return False
def process_interactions(self, organisms: List[FractalOrganism]):
"""Process all current interactions"""
try:
# Process collision-based interactions
for org_a_id, org_b_id in self.current_interactions:
org_a = next((org for org in organisms if id(org) == org_a_id), None)
org_b = next((org for org in organisms if id(org) == org_b_id), None)
if org_a and org_b and org_a.alive and org_b.alive:
# Neural interaction
shared_thoughts = org_a.brain.interact_with(org_b.brain)
# Energy transfer based on neural activity
energy_diff = org_a.brain.total_energy - org_b.brain.total_energy
transfer = max(-10.0, min(10.0, energy_diff * 0.1)) # Limit transfer amount
org_a.brain.total_energy = max(0, org_a.brain.total_energy - transfer)
org_b.brain.total_energy = max(0, org_b.brain.total_energy + transfer)
# Clear interactions for next frame
self.current_interactions.clear()
# Process proximity-based interactions
for i, org_a in enumerate(organisms):
if not org_a.alive:
continue
for org_b in organisms[i+1:]:
if not org_b.alive:
continue
# Calculate distance with validation
dx = org_b.pos.x - org_a.pos.x
dy = org_b.pos.y - org_a.pos.y
if np.isnan(dx) or np.isnan(dy):
continue
distance = np.sqrt(dx*dx + dy*dy)
if distance < self.config.INTERACTION_RADIUS:
# Calculate interaction strength based on distance
strength = 1.0 - (distance / self.config.INTERACTION_RADIUS)
# Neural field effect with reduced strength
field_interaction = strength * 0.5
# Calculate force with validation
force_magnitude = field_interaction * self.config.FORCE_SCALE
force_angle = np.arctan2(dy, dx)
if not (np.isnan(force_magnitude) or np.isnan(force_angle)):
force_x = np.cos(force_angle) * force_magnitude
force_y = np.sin(force_angle) * force_magnitude
# Clamp forces
max_force = 100.0
force_x = max(-max_force, min(max_force, force_x))
force_y = max(-max_force, min(max_force, force_y))
# Apply forces through physics bodies
body_a = next((body for body in self.space.bodies
if hasattr(body, 'organism') and body.organism == org_a), None)
body_b = next((body for body in self.space.bodies
if hasattr(body, 'organism') and body.organism == org_b), None)
if body_a and body_b:
body_a.apply_force_at_local_point((-force_x, -force_y), (0, 0))
body_b.apply_force_at_local_point((force_x, force_y), (0, 0))
# Apply direct forces to organisms as well
org_a.apply_force((-force_x, -force_y))
org_b.apply_force((force_x, force_y))
except Exception as e:
logging.error(f"Error processing interactions: {e}")
# ==============================
# Visualization with PyGame
# ==============================
class NeuralVisualizer:
def __init__(self, width: int, height: int, config: VisualizationConfig):
self.width = width
self.height = height
self.config = config
self.neuron_surface = pygame.Surface((width, height), pygame.SRCALPHA)
self.connection_surface = pygame.Surface((width, height), pygame.SRCALPHA)
def _apply_pattern_overlay(self, organism, surface):
"""Apply visual pattern overlay based on organism type"""
try:
if not organism.alive:
return
pattern_alpha = int(255 * organism.pattern_intensity)
pattern_color = (
255 - organism.color[0],
255 - organism.color[1],
255 - organism.color[2],
pattern_alpha
)
# Create pattern surface
pattern_surface = pygame.Surface((self.width, self.height), pygame.SRCALPHA)
if organism.pattern_type == 'stripes':
# Draw alternating stripes
stride = max(5, int(organism.size * 0.5))
x, y = int(organism.pos.x), int(organism.pos.y)
for i in range(-2, 3):
offset = i * stride
pygame.draw.line(pattern_surface, pattern_color,
(x - organism.size, y + offset),
(x + organism.size, y + offset), 2)
elif organism.pattern_type == 'spots':
# Draw spots in a circular pattern
x, y = int(organism.pos.x), int(organism.pos.y)
spot_size = max(2, int(organism.size * 0.2))
for angle in range(0, 360, 45):
spot_x = x + int(np.cos(np.radians(angle)) * organism.size * 0.7)
spot_y = y + int(np.sin(np.radians(angle)) * organism.size * 0.7)
pygame.draw.circle(pattern_surface, pattern_color,
(spot_x, spot_y), spot_size)
else: # gradient
# Draw radial gradient
x, y = int(organism.pos.x), int(organism.pos.y)
max_radius = int(organism.size * 1.2)
for radius in range(max_radius, 0, -2):
alpha = int((radius / max_radius) * pattern_alpha)
current_color = (*pattern_color[:3], alpha)
pygame.draw.circle(pattern_surface, current_color,
(x, y), radius, 1)
# Blend pattern with surface
surface.blit(pattern_surface, (0, 0), special_flags=pygame.BLEND_ALPHA_SDL2)
except Exception as e:
logging.error(f"Error applying pattern overlay: {e}")
def draw_brain_state(self, organism: FractalOrganism, surface: pygame.Surface):
"""Draw neural activity visualization with patterns and NaN handling"""
try:
# Clear previous state
self.neuron_surface.fill((0, 0, 0, 0))
self.connection_surface.fill((0, 0, 0, 0))
# Get brain vitals with NaN check
vitals = organism.brain.get_vitals()
if any(np.isnan(value) for value in vitals.values() if isinstance(value, (int, float))):
logging.warning(f"NaN detected in vitals for organism {id(organism)}. Marking for death.")
organism.alive = False
return
# Calculate neural positions based on fractal pattern
def plot_neural_layer(center, radius, neurons, depth=0):
if depth >= 3 or not neurons:
return
# Convert neurons to list if it's a ModuleList
if hasattr(neurons, 'sub_neurons'):
neurons = neurons.sub_neurons
if not neurons or len(neurons) == 0:
return
angle_step = 2 * np.pi / len(neurons)
for i, neuron in enumerate(neurons):
try:
angle = i * angle_step
x = center[0] + radius * np.cos(angle)
y = center[1] + radius * np.sin(angle)
# NaN check for coordinates
if np.isnan(x) or np.isnan(y):
logging.warning(f"NaN coordinates detected for neuron {i}. Skipping.")
continue
# Draw neuron
activation = float(neuron.state.activation)
connections = int(neuron.state.connections)
# Check for NaNs in neuron state
if np.isnan(activation) or np.isnan(connections):
logging.warning(f"NaN detected in neuron state. Marking organism for death.")
organism.alive = False
return
# Ensure coordinates are valid integers
x_pos = int(np.clip(x, 0, self.width))
y_pos = int(np.clip(y, 0, self.height))
color = self._get_neuron_color(activation, connections)
pygame.draw.circle(self.neuron_surface, color, (x_pos, y_pos), 5)
# Draw connections with safety checks
if connections > 0:
alpha = int(255 * min(connections / self.config.MAX_NEURAL_CONNECTIONS, 1))
if not np.isnan(alpha):
connection_color = (*self.config.CONNECTION_COLOR[:3], alpha)
pygame.draw.line(
self.connection_surface,
connection_color,
(x_pos, y_pos),
(int(center[0]), int(center[1])),
2
)
# Recursively draw sub-neurons
if hasattr(neuron, 'sub_neurons') and neuron.sub_neurons:
child_radius = radius * 0.5
child_center = (x, y)
plot_neural_layer(child_center, child_radius, neuron.sub_neurons, depth + 1)
except Exception as e:
logging.error(f"Error plotting neuron {i}: {e}")
continue
# Draw neural network
try:
center = (organism.pos.x, organism.pos.y)
if not (np.isnan(center[0]) or np.isnan(center[1])):
plot_neural_layer(center, organism.size * 2,
[organism.brain.visual_cortex,
organism.brain.thought_processor,
organism.brain.action_generator])
except Exception as e:
logging.error(f"Error plotting neural network: {e}")
# Apply pattern overlay with safety checks
try:
self._apply_pattern_overlay(organism, surface)
except Exception as e:
logging.error(f"Error applying pattern overlay: {e}")
# Combine surfaces with alpha blending
surface.blit(self.connection_surface, (0, 0))
surface.blit(self.neuron_surface, (0, 0))
except Exception as e:
logging.error(f"Error in draw_brain_state: {e}")
def _get_neuron_color(self, activation: float, connections: int) -> Tuple[int, int, int]:
"""Generate color based on neuron state"""
try:
# Use HSV color space for smooth transitions
hue = (activation + 1) / 2 # Map -1,1 to 0,1
saturation = min(connections / self.config.MAX_NEURAL_CONNECTIONS, 1)
value = 0.8 + 0.2 * activation
# Convert to RGB
rgb = colorsys.hsv_to_rgb(hue, saturation, value)
return tuple(int(255 * x) for x in rgb)
except Exception as e:
logging.error(f"Error in _get_neuron_color: {e}. Defaulting to gray.")
return (100, 100, 100)
class SimulationVisualizer:
def __init__(self, width: int, height: int, config: VisualizationConfig):
pygame.init()
self.width = width
self.height = height
self.config = config
# Enable double buffering and vsync
self.screen = pygame.display.set_mode(
(width, height),
pygame.DOUBLEBUF | pygame.HWSURFACE | pygame.SCALED,
vsync=1
)
pygame.display.set_caption("Fractal Life Simulation")
# Create off-screen surfaces for double buffering
self.buffer = pygame.Surface((width, height), pygame.SRCALPHA)
self.neural_viz = NeuralVisualizer(width, height, config)
self.background = pygame.Surface((width, height))
self.background.fill(config.BACKGROUND_COLOR)
# Additional surfaces for layered rendering
self.organism_surface = pygame.Surface((width, height), pygame.SRCALPHA)
self.interaction_surface = pygame.Surface((width, height), pygame.SRCALPHA)
self.stats_surface = pygame.Surface((width, height), pygame.SRCALPHA)
def _validate_color(self, color):
"""Validate and ensure color values are proper RGB integers"""
try:
if len(color) >= 3:
return (
max(0, min(255, int(color[0]))),
max(0, min(255, int(color[1]))),
max(0, min(255, int(color[2])))
)
return (100, 100, 100) # Default fallback color
except Exception as e:
logging.error(f"Error validating color: {e}")
return (100, 100, 100)
def draw_frame(self, organisms: List[FractalOrganism], stats: Dict):
"""Draw complete frame with all visualizations"""
try:
# Clear all off-screen surfaces
self.organism_surface.fill((0, 0, 0, 0))
self.interaction_surface.fill((0, 0, 0, 0))
self.stats_surface.fill((0, 0, 0, 0))
# Draw organisms and their neural states
for organism in organisms:
if organism.alive:
self._draw_organism(organism, self.organism_surface)
self.neural_viz.draw_brain_state(organism, self.interaction_surface)
# Draw statistics
self._draw_stats(stats, self.stats_surface)
# Blit off-screen surfaces to the main display surface
self.screen.blit(self.background, (0, 0)) # Background layer
self.screen.blit(self.organism_surface, (0, 0))
self.screen.blit(self.interaction_surface, (0, 0))
self.screen.blit(self.stats_surface, (0, 0))
# Flip display buffers to avoid flickering
pygame.display.flip()
except Exception as e:
logging.error(f"Error in draw_frame: {e}")
def _draw_organism(self, organism: FractalOrganism, surface: pygame.Surface):
"""Draw organism body with color and pattern"""
try:
# Validate color before drawing
safe_color = self._validate_color(organism.color)
# Draw shape with validated color
points = []
for x, y in organism.shape_points:
try:
px = organism.pos.x + x
py = organism.pos.y + y
if not (np.isnan(px) or np.isnan(py)):
points.append((px, py))
else:
logging.warning(f"NaN detected in shape points for organism {id(organism)}. Skipping point.")
except Exception as e:
logging.error(f"Error processing shape points for organism {id(organism)}: {e}")
continue
if len(points) >= 3:
pygame.draw.polygon(surface, safe_color, points)
else:
logging.warning(f"Insufficient valid points to draw organism {id(organism)}. Skipping drawing.")
# Draw energy bar
energy_percentage = min(max(organism.brain.total_energy / 1000.0, 0), 1)
bar_width = organism.size * 2
bar_height = 4
bar_pos = (organism.pos.x - bar_width / 2, organism.pos.y - organism.size - 10)
pygame.draw.rect(surface, (50, 50, 50), (*bar_pos, bar_width, bar_height))
pygame.draw.rect(surface, (0, 255, 0), # Using direct color value for energy bar
(*bar_pos, bar_width * energy_percentage, bar_height))
except Exception as e:
logging.error(f"Error in _draw_organism: {e}")
def _draw_stats(self, stats: Dict, surface: pygame.Surface):
"""Draw simulation statistics"""
try:
font = pygame.font.Font(None, 24)
y_pos = 10
for key, value in stats.items():
text = font.render(f"{key.capitalize()}: {value}", True, (255, 255, 255))
surface.blit(text, (10, y_pos))
y_pos += 25
except Exception as e:
logging.error(f"Error in _draw_stats: {e}")
def cleanup(self):
"""Clean up pygame resources"""
try:
pygame.quit()
except Exception as e:
logging.error(f"Error during pygame cleanup: {e}")
# ==============================
# Interaction Field (Optional Enhancement)
# ==============================
class InteractionField:
def __init__(self, width: int, height: int, resolution: int = 50):
self.width = max(1, width)
self.height = max(1, height)
self.resolution = max(10, min(resolution, 100)) # Bound resolution
# Create field grid with safe dimensions
self.grid_w = max(1, self.width // self.resolution)
self.grid_h = max(1, self.height // self.resolution)
self.field = np.zeros((self.grid_w, self.grid_h, 3))
def update(self, organisms: List[FractalOrganism]):
"""Update field based on organism neural activity with safety checks"""
try:
# Decay field
self.field *= 0.9
np.clip(self.field, 0, 1, out=self.field)
for org in organisms:
if not org.alive:
continue
try:
# Safe position to grid conversion
pos_x = max(0, min(float(org.pos.x), self.width))
pos_y = max(0, min(float(org.pos.y), self.height))
grid_x = int((pos_x / self.width) * (self.grid_w - 1))
grid_y = int((pos_y / self.height) * (self.grid_h - 1))
# Get neural activity with safety checks
vitals = org.brain.get_vitals()
activity_color = np.array([
max(0.0, min(1.0, float(vitals['activation']))),
max(0.0, min(1.0, float(vitals['energy']) / 1000.0)),
max(0.0, min(1.0, float(vitals['connections']) / 100.0))
])
# Apply to field with falloff
for dx in range(-2, 3):
for dy in range(-2, 3):
x = (grid_x + dx) % self.grid_w
y = (grid_y + dy) % self.grid_h
distance = np.sqrt(dx * dx + dy * dy)
if distance < 3:
intensity = max(0.0, min(1.0, (3 - distance) / 3))
self.field[x, y] += activity_color * intensity
except (ValueError, TypeError, ZeroDivisionError) as e:
logging.error(f"Error updating field for organism {id(org)}: {e}")
continue # Skip problematic organisms
# Ensure field values stay in valid range
np.clip(self.field, 0, 1, out=self.field)
except Exception as e:
logging.error(f"Error in InteractionField.update: {e}")
def get_field_at(self, x: float, y: float) -> np.ndarray:
"""Safely get field value at position"""
try:
x = max(0, min(float(x), self.width))
y = max(0, min(float(y), self.height))
grid_x = int((x / self.width) * (self.grid_w - 1))
grid_y = int((y / self.height) * (self.grid_h - 1))
return self.field[grid_x, grid_y]
except (ValueError, TypeError, IndexError) as e:
logging.error(f"Error in get_field_at for position ({x}, {y}): {e}")
return np.zeros(3)
# ==============================
# Simulation State Tracking
# ==============================
class SimulationState:
"""Tracks the current state of the simulation"""
def __init__(self):
self.running = False
self.paused = False
self.step_count = 0
self.stats = {
'population': 0,
'avg_energy': 0.0,
'avg_neurons': 0.0,
'avg_connections': 0.0,
'total_interactions': 0
}
self.selected_organism: Optional[FractalOrganism] = None
# ==============================
# Main Simulation Class
# ==============================
class FractalLifeSimulation:
def __init__(self, config: SimulationConfig, shared_data: Dict):
self.config = config
self.state = SimulationState()
# Shared data for Gradio interface
self.shared_data = shared_data
self.shared_lock = threading.Lock()
# Initialize systems
visualization_config = VisualizationConfig()
self.visualizer = SimulationVisualizer(config.WIDTH, config.HEIGHT, visualization_config)
self.physics = PhysicsEngine(config.WIDTH, config.HEIGHT, PhysicsConfig())
self.field = InteractionField(config.WIDTH, config.HEIGHT, resolution=50)
# Event queues for thread communication
self.event_queue = Queue()
self.stats_queue = Queue()
# Initialize organisms
self.organisms: List[FractalOrganism] = []
self._init_organisms()
# Pygame threading control
self.running = False
self.thread = None
def _init_organisms(self):
"""Initialize starting organisms"""
try:
for _ in range(self.config.MIN_ORGANISMS):
x = random.uniform(0, self.config.WIDTH)
y = random.uniform(0, self.config.HEIGHT)
organism = FractalOrganism(
x=x, y=y,
feature_dim=32,
max_neurons=self.config.MAX_NEURONS
)
self.organisms.append(organism)
self.physics.add_organism(organism)
except Exception as e:
logging.error(f"Error initializing organisms: {e}")
def _process_reproduction(self):
"""Handle organism reproduction"""
try:
new_organisms = []
for org in self.organisms:
if not org.alive or len(self.organisms) + len(new_organisms) >= self.config.MAX_ORGANISMS:
continue
if org.brain.total_energy > self.config.REPRODUCTION_ENERGY:
# Find a mate (simple random selection for demonstration)
potential_mates = [o for o in self.organisms if o != org and o.alive and o.brain.total_energy > self.config.REPRODUCTION_ENERGY]
if potential_mates:
mate = random.choice(potential_mates)
child = org.reproduce(mate, mutation_rate=self.config.MUTATION_RATE)
if child:
new_organisms.append(child)
self.physics.add_organism(child)
self.organisms.extend(new_organisms)
except Exception as e:
logging.error(f"Error processing reproduction: {e}")
def _update_stats(self):
"""Update simulation statistics"""
try:
living_organisms = [org for org in self.organisms if org.alive]
population = len(living_organisms)
if population > 0:
self.state.stats.update({
'population': population,
'avg_energy': sum(org.brain.total_energy for org in living_organisms) / population,
'avg_neurons': sum(org.brain.total_neurons for org in living_organisms) / population,
'avg_connections': sum(sum(n.state.connections for n in [org.brain.visual_cortex,
org.brain.thought_processor,
org.brain.action_generator])
for org in living_organisms) / population,
'total_interactions': len(self.physics.current_interactions)
})
else:
self.state.stats.update({
'population': 0,
'avg_energy': 0.0,
'avg_neurons': 0.0,
'avg_connections': 0.0,
'total_interactions': 0
})
with self.shared_lock:
self.shared_data['stats'] = self.state.stats.copy()
except Exception as e:
logging.error(f"Error updating statistics: {e}")
def _main_loop(self):
"""Main simulation loop"""
try:
clock = pygame.time.Clock()
while self.running:
dt = clock.tick(self.config.TARGET_FPS) / 1000.0 # Delta time in seconds
for event in pygame.event.get():
if event.type == pygame.QUIT:
self.stop()
# Process external events
while not self.event_queue.empty():
event = self.event_queue.get()
self._handle_event(event)
if not self.state.paused:
# Update physics
self.physics.update(dt)
# Update neural field
self.field.update(self.organisms)
# Update organisms
for org in self.organisms:
if org.alive:
# Update organism state
org.update(self.config.WIDTH, self.config.HEIGHT, self.organisms)
# Process field interactions (placeholder for actual implementation)
field_value = self.field.get_field_at(org.pos.x, org.pos.y)
# org.process_field_input(field_value) # Implement if needed
# Energy decay
org.brain.total_energy = max(0.0, org.brain.total_energy - self.config.ENERGY_DECAY)
# Process physical interactions
self.physics.process_interactions(self.organisms)
# Handle reproduction
self._process_reproduction()
# Remove dead organisms
self.organisms = [org for org in self.organisms if org.alive]
# Maintain minimum population
while len(self.organisms) < self.config.MIN_ORGANISMS and len(self.organisms) < self.config.MAX_ORGANISMS:
x = random.uniform(0, self.config.WIDTH)
y = random.uniform(0, self.config.HEIGHT)
organism = FractalOrganism(
x=x, y=y,
feature_dim=32,
max_neurons=self.config.MAX_NEURONS
)
self.organisms.append(organism)
self.physics.add_organism(organism)
# Update statistics
self._update_stats()
# Draw frame
self.visualizer.draw_frame(self.organisms, self.state.stats)
except Exception as e:
logging.error(f"Exception in main loop: {e}")
finally:
# Cleanup when simulation stops
self.visualizer.cleanup()
def start(self):
"""Start simulation in separate thread"""
if not self.running:
self.running = True
self.thread = threading.Thread(target=self._main_loop)
self.thread.start()
logging.info("Simulation started.")
def stop(self):
"""Stop simulation"""
self.running = False
if self.thread and self.thread.is_alive():
self.thread.join()
logging.info("Simulation stopped.")
def pause(self):
"""Pause/unpause simulation"""
self.state.paused = not self.state.paused
logging.info(f"Simulation {'paused' if self.state.paused else 'resumed'}.")
def _handle_event(self, event: Dict):
"""Handle external events"""
try:
if event['type'] == 'select_organism':
organism_id = event['organism_id']
self.state.selected_organism = next(
(org for org in self.organisms if id(org) == organism_id),
None
)
logging.info(f"Organism {organism_id} selected.")
elif event['type'] == 'add_energy':
if self.state.selected_organism:
self.state.selected_organism.brain.total_energy += event['amount']
logging.info(f"Added {event['amount']} energy to organism {id(self.state.selected_organism)}.")
elif event['type'] == 'modify_neurons':
if self.state.selected_organism:
# Placeholder for neuron modification logic
logging.info(f"Modify neurons event received for organism {id(self.state.selected_organism)}.")
except Exception as e:
logging.error(f"Error handling event {event}: {e}")
# ==============================
# Gradio Interface
# ==============================
class FractalLifeInterface:
def __init__(self):
self.simulation: Optional[FractalLifeSimulation] = None
self.history = {
'population': [],
'avg_energy': [],
'avg_neurons': [],
'time': []
}
self.selected_organism_id = None
self.frame_image = None
self.DEFAULT_WIDTH = 1024
self.DEFAULT_HEIGHT = 768
self.shared_data = {
'stats': {
'population': 0,
'avg_energy': 0.0,
'avg_neurons': 0.0,
'avg_connections': 0.0,
'total_interactions': 0
}
}
def get_frame(self):
"""Retrieve the latest frame from Pygame."""
try:
if self.simulation and self.simulation.running:
with self.simulation.shared_lock:
# Get pygame surface
screen = self.simulation.visualizer.screen
# Get the size of the screen
width = screen.get_width()
height = screen.get_height()
# Create a new surface with alpha channel
surf_alpha = pygame.Surface((width, height), pygame.SRCALPHA)
surf_alpha.blit(screen, (0, 0))
# Convert Pygame surface to PIL Image
data_string = pygame.image.tostring(surf_alpha, 'RGBA')
image = Image.frombytes('RGBA', (width, height), data_string)
# Convert to RGB
image = image.convert('RGB')
return image
else:
# Return a blank image
return Image.new('RGB', (self.DEFAULT_WIDTH, self.DEFAULT_HEIGHT), (0, 0, 0))
except Exception as e:
logging.error(f"Error in get_frame: {e}")
# Return a fallback image in case of error
return Image.new('RGB', (self.DEFAULT_WIDTH, self.DEFAULT_HEIGHT), (0, 0, 0))
def update_display(self):
"""Update display by retrieving the latest frame and statistics."""
try:
# Get the frame as PIL Image
image = self.get_frame()
# Update statistics only if simulation is running
if self.simulation and self.simulation.running:
with self.simulation.shared_lock:
stats = self.shared_data['stats']
# Update history
self.history['time'].append(self.simulation.state.step_count)
self.history['population'].append(stats['population'])
self.history['avg_energy'].append(stats['avg_energy'])
self.history['avg_neurons'].append(stats['avg_neurons'])
# Limit history length to prevent memory issues
max_history = 1000
if len(self.history['time']) > max_history:
for key in self.history:
self.history[key] = self.history[key][-max_history:]
else:
stats = self.shared_data['stats']
# Update plots
stats_fig = self._create_stats_plot()
neural_fig = self._create_neural_plot()
# Update organism list only if simulation is running
organism_list = []
if self.simulation and self.simulation.running:
organism_list = [
(f"Organism {id(org)}", id(org))
for org in self.simulation.organisms
if org.alive
]
# Update selected organism vitals
vitals = None
if self.selected_organism_id and self.simulation and self.simulation.running:
org = next(
(org for org in self.simulation.organisms
if id(org) == self.selected_organism_id),
None
)
if org:
vitals = {
'energy': org.brain.total_energy,
'neurons': org.brain.total_neurons,
'age': org.age,
'connections': sum(n.state.connections for n in
[org.brain.visual_cortex,
org.brain.thought_processor,
org.brain.action_generator])
}
# Create new Dropdown choices instead of using update
dropdown = gr.Dropdown(
choices=organism_list,
label="Select Organism",
interactive=True
)
return [
image, # Return PIL Image directly
stats_fig,
neural_fig,
dropdown,
vitals
]
except Exception as e:
logging.error(f"Error in update_display: {e}")
# Return default values in case of error
blank_image = Image.new('RGB', (self.DEFAULT_WIDTH, self.DEFAULT_HEIGHT), (0, 0, 0))
empty_fig = go.Figure()
empty_dropdown = gr.Dropdown(choices=[])
return [blank_image, empty_fig, empty_fig, empty_dropdown, None]
def create_interface(self):
with gr.Blocks(title="Fractal Life Simulator") as interface:
gr.Markdown("# 🧬 Fractal Life Simulator")
with gr.Row():
# Main simulation view and controls
with gr.Column(scale=2):
canvas = gr.Image(label="Simulation View", interactive=False)
with gr.Row():
start_btn = gr.Button("Start Simulation", variant="primary")
pause_btn = gr.Button("Pause")
stop_btn = gr.Button("Stop")
with gr.Row():
population_slider = gr.Slider(
minimum=5, maximum=100, # Increased maximum for flexibility
value=10, step=1,
label="Initial Population"
)
mutation_rate = gr.Slider(
minimum=0, maximum=1, value=0.1, step=0.01,
label="Mutation Rate"
)
max_population_slider = gr.Slider(
minimum=50, maximum=500, value=50, step=10,
label="Max Population"
)
# Statistics and organism details
with gr.Column(scale=1):
stats_plot = gr.Plot(label="Population Statistics")
neural_plot = gr.Plot(label="Neural Activity")
with gr.Group():
gr.Markdown("### Selected Organism")
organism_dropdown = gr.Dropdown(
label="Select Organism",
choices=[],
interactive=True
)
vitals_json = gr.JSON(label="Organism Vitals")
with gr.Row():
add_energy_btn = gr.Button("Add Energy")
add_neurons_btn = gr.Button("Add Neurons")
# Advanced settings tab
with gr.Tab("Advanced Settings"):
with gr.Row():
with gr.Column():
brain_update_rate = gr.Slider(
minimum=1, maximum=30, value=10, step=1,
label="Brain Update Rate (Hz)"
)
max_neurons = gr.Slider(
minimum=100, maximum=5000, value=1000, step=100,
label="Max Neurons per Brain"
)
energy_decay = gr.Slider(
minimum=0, maximum=1, value=0.1, step=0.01,
label="Energy Decay Rate"
)
with gr.Column():
interaction_strength = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01,
label="Interaction Strength"
)
field_resolution = gr.Slider(
minimum=10, maximum=100, value=50, step=5,
label="Field Resolution"
)
# Event handlers
def start_simulation(initial_population, mutation_rate_val, max_population_val,
brain_update_rate_val, max_neurons_val, energy_decay_val,
interaction_strength_val, field_resolution_val):
try:
if self.simulation is None:
config = SimulationConfig()
config.MIN_ORGANISMS = int(initial_population)
config.MUTATION_RATE = mutation_rate_val
config.MAX_ORGANISMS = int(max_population_val)
config.BRAIN_UPDATE_RATE = int(brain_update_rate_val)
config.MAX_NEURONS = int(max_neurons_val)
config.ENERGY_DECAY = energy_decay_val
self.simulation = FractalLifeSimulation(config, self.shared_data)
self.simulation.start()
logging.info("Simulation started via interface.")
return "Simulation started"
else:
logging.warning("Simulation is already running.")
return "Simulation is already running."
except Exception as e:
logging.error(f"Error starting simulation: {e}")
return "Failed to start simulation."
def pause_simulation():
try:
if self.simulation:
self.simulation.pause()
status = "paused" if self.simulation.state.paused else "resumed"
logging.info(f"Simulation {status} via interface.")
return f"Simulation {status}"
logging.warning("No simulation running to pause/resume.")
return "No simulation running"
except Exception as e:
logging.error(f"Error pausing simulation: {e}")
return "Failed to pause simulation."
def stop_simulation():
try:
if self.simulation:
self.simulation.stop()
self.simulation = None
logging.info("Simulation stopped via interface.")
return "Simulation stopped"
logging.warning("No simulation running to stop.")
return "No simulation running"
except Exception as e:
logging.error(f"Error stopping simulation: {e}")
return "Failed to stop simulation."
def select_organism(organism_id):
try:
self.selected_organism_id = organism_id
if self.simulation:
self.simulation.event_queue.put({
'type': 'select_organism',
'organism_id': organism_id
})
logging.info(f"Organism {organism_id} selected via interface.")
except Exception as e:
logging.error(f"Error selecting organism: {e}")
def add_energy_to_organism():
try:
if self.simulation and self.selected_organism_id:
self.simulation.event_queue.put({
'type': 'add_energy',
'amount': 50.0
})
logging.info(f"Added energy to organism {self.selected_organism_id} via interface.")
return "Added energy to selected organism"
logging.warning("No organism selected or simulation not running to add energy.")
return "No organism selected or simulation not running"
except Exception as e:
logging.error(f"Error adding energy to organism: {e}")
return "Failed to add energy"
def add_neurons_to_organism():
try:
if self.simulation and self.selected_organism_id:
self.simulation.event_queue.put({
'type': 'modify_neurons',
'amount': 10
})
logging.info(f"Added neurons to organism {self.selected_organism_id} via interface.")
return "Added neurons to selected organism"
logging.warning("No organism selected or simulation not running to add neurons.")
return "No organism selected or simulation not running"
except Exception as e:
logging.error(f"Error adding neurons to organism: {e}")
return "Failed to add neurons"
# Create a bound method for update_display
def bound_update_display():
return self.update_display()
# Connect events
start_btn.click(
start_simulation,
inputs=[population_slider, mutation_rate, max_population_slider,
brain_update_rate, max_neurons, energy_decay,
interaction_strength, field_resolution],
outputs=gr.Textbox()
)
pause_btn.click(pause_simulation, outputs=gr.Textbox())
stop_btn.click(stop_simulation, outputs=gr.Textbox())
organism_dropdown.change(select_organism, inputs=[organism_dropdown], outputs=None)
add_energy_btn.click(add_energy_to_organism, outputs=gr.Textbox())
add_neurons_btn.click(add_neurons_to_organism, outputs=gr.Textbox())
# Periodic update using Gradio's update mechanism
interface.load(
fn=bound_update_display,
inputs=[],
outputs=[canvas, stats_plot, neural_plot, organism_dropdown, vitals_json],
every=1/30, # 30 FPS updates
queue=True
)
return interface
def _create_stats_plot(self):
"""Create statistics plot using plotly"""
try:
fig = make_subplots(rows=3, cols=1, shared_xaxes=True,
subplot_titles=("Population", "Average Energy", "Average Neurons"))
fig.add_trace(
go.Scatter(x=self.history['time'], y=self.history['population'],
name="Population"),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=self.history['time'], y=self.history['avg_energy'],
name="Avg Energy"),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=self.history['time'], y=self.history['avg_neurons'],
name="Avg Neurons"),
row=3, col=1
)
fig.update_layout(height=600, showlegend=True)
return fig
except Exception as e:
logging.error(f"Error creating stats plot: {e}")
return go.Figure()
def _create_neural_plot(self):
"""Create neural activity plot"""
try:
if self.selected_organism_id and self.simulation and self.simulation.running:
org = next(
(org for org in self.simulation.organisms
if id(org) == self.selected_organism_id),
None
)
if org:
# Create neural activity heatmap
neurons = [org.brain.visual_cortex,
org.brain.thought_processor,
org.brain.action_generator]
activities = []
for neuron in neurons:
layer_activities = [child.state.activation for child in neuron.sub_neurons] if hasattr(neuron, 'sub_neurons') and neuron.sub_neurons else [neuron.state.activation]
activities.append(layer_activities)
activities = np.array(activities)
fig = go.Figure(data=go.Heatmap(z=activities, colorscale='Viridis'))
fig.update_layout(
title="Neural Activity",
xaxis_title="Neuron Index",
yaxis_title="Layer"
)
return fig
return go.Figure()
except Exception as e:
logging.error(f"Error creating neural plot: {e}")
return go.Figure()
# ==============================
# Entry Point
# ==============================
if __name__ == "__main__":
interface = FractalLifeInterface()
gr_interface = interface.create_interface()
# Enable queue and allow for public access
gr_interface.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True # This creates a public link
)
|