ChestDiseaseDetection / final_project_Gradio_App.py
AlooBonda's picture
Project Pushed to HuggingFace
f033a7b
# Let us first import all the necessary libraries required for this project
import tensorflow as tf
import torch
import cv2
import sklearn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
import torch.optim as optim
import torchvision
import torch.nn.functional as F
from PIL import Image
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, roc_curve, auc
# Later on, as per requirement, more libraries wil be imported
import gradio as gr
def adjust_brightness_contrast(image, alpha=1.2, beta=50):
"""
Adjusting brightness and contrast of the image.
Parameters:
- image: Input image (numpy array).
- alpha: Contrast control [1.0-3.0].
- beta: Brightness control [0-100].
Returns:
- Adjusted image.
"""
return cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
def apply_histogram_equalization(image):
"""Applying histogram equalization to enhance contrast."""
channels = cv2.split(image)
eq_channels = [cv2.equalizeHist(ch) for ch in channels]
return cv2.merge(eq_channels)
def apply_clahe(image, clip_limit=2.0, tile_grid_size=(8, 8)):
"""Applying CLAHE for local contrast enhancement."""
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
channels = cv2.split(image)
clahe_channels = [clahe.apply(ch) for ch in channels]
return cv2.merge(clahe_channels)
def apply_gaussian_blur(image, kernel_size=(3, 3)):
"""Applying Gaussian blur for denoising."""
return cv2.GaussianBlur(image, kernel_size, 0)
def apply_sharpening(image):
"""Applying edge enhancement using a sharpening filter."""
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]])
return cv2.filter2D(image, -1, kernel)
def normalize_image(image):
"""Normalizing the image to zero mean and unit variance."""
image = (image - np.mean(image)) / np.std(image)
return image
def resize_image(image, width, height):
"""Resizing the image to the desired dimensions with anti-aliasing."""
return cv2.resize(image, (width, height), interpolation=cv2.INTER_CUBIC)
def preprocess_single_image(pil_image, img_height=224, img_width=224):
"""
Preprocessing a single image as per the training pipeline.
Parameters:
- pil_image: Input PIL image.
- img_height, img_width: Dimensions to resize the image.
Returns:
- Preprocessed image tensor.
"""
# Converting PIL image to numpy array
image = np.array(pil_image)
# Ensuring the image is in RGB format
if len(image.shape) == 2 or image.shape[2] == 1: # Grayscale image
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Applying preprocessing steps
image = apply_histogram_equalization(image)
image = apply_clahe(image)
image = apply_gaussian_blur(image)
image = apply_sharpening(image)
image = adjust_brightness_contrast(image, alpha=1.2, beta=50)
# Resizing and normalization
image = resize_image(image, img_width, img_height)
image = normalize_image(image)
# Converting to PIL image and applying transformations
image = Image.fromarray(image.astype(np.uint8))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image_tensor = transform(image).unsqueeze(0) # Adding batch dimension
return image_tensor
# Detecting GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from torchvision.models import densenet121
from torchvision.transforms import Resize
# Simplified ViT-like transformer module
class SimpleViT(nn.Module):
def __init__(self, input_dim, num_heads, mlp_dim, num_layers):
super(SimpleViT, self).__init__()
# Reduced TransformerEncoder layer complexity
self.transformer_blocks = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=input_dim,
nhead=num_heads,
dim_feedforward=mlp_dim,
dropout=0.1
) for _ in range(num_layers)
])
def forward(self, x):
# Flattening the spatial dimensions
B, C, H, W = x.shape
x = x.flatten(2).permute(2, 0, 1) # Reshaping for transformer
for block in self.transformer_blocks:
x = block(x)
x = x.permute(1, 2, 0).reshape(B, C, H, W) # Restoring the original shape
return x
# Adjusted Hybrid DenseNet + Simplified ViT Architecture
class LightweightHybridDenseNetViT(nn.Module):
def __init__(self):
super(LightweightHybridDenseNetViT, self).__init__()
# Loading a lighter DenseNet backbone
self.densenet = densenet121(pretrained=False) # Base DenseNet backbone
# Reducing the output channels from DenseNet to smaller dimensions
self.conv_reduce = nn.Conv2d(1024, 64, kernel_size=1) # Fewer channels
# ViT processing module with reduced complexity
self.vit = SimpleViT(input_dim=64, num_heads=2, mlp_dim=128, num_layers=1)
# Task-specific classification heads
self.fc_pneumonia = nn.Linear(64, 1) # Binary classification (Pneumonia)
self.fc_tuberculosis = nn.Linear(64, 1) # Binary classification (Tuberculosis)
self.fc_lung_cancer = nn.Linear(64, 4) # Multi-class output (Lung Cancer)
def forward(self, x):
# Extracting DenseNet features
x = self.densenet.features(x) # Extracting DenseNet feature maps
x = self.conv_reduce(x) # Reducing the number of feature channels
# Passing through simplified ViT module
x = self.vit(x)
# Applying Global Average Pooling (GAP)
x = x.mean(dim=[2, 3]) # Pooling across spatial dimensions
# Task-specific classification
pneumonia_output = torch.sigmoid(self.fc_pneumonia(x)) # Binary sigmoid output
tuberculosis_output = torch.sigmoid(self.fc_tuberculosis(x)) # Binary sigmoid output
lung_cancer_output = self.fc_lung_cancer(x) # Multi-class logits
return pneumonia_output, tuberculosis_output, lung_cancer_output
# Loading the saved model
img_size = 224 # Matching the dimensions used during training
patch_size = 8
model = LightweightHybridDenseNetViT().to(device)
model.load_state_dict(torch.load("model_FINAL.pth", map_location=device)) # Mapping to the correct device
model.to(device) # Moving the model to GPU/CPU
model.eval() # Setting to evaluation mode
# Function to pre-process the image and perform inference
def predict_image(image):
"""
Predicts the probabilities of Pneumonia, TB, and Lung Cancer from the input image.
"""
# Preprocessing the image
image_tensor = preprocess_single_image(image, img_height=224, img_width=224)
image_tensor = image_tensor.to(device)
# Performing inference
with torch.no_grad():
pneumonia_output, tb_output, lung_cancer_output = model(image_tensor)
# Getting the probabilities
pneumonia_prob = pneumonia_output.item()
tb_prob = tb_output.item()
lung_cancer_probs = F.softmax(lung_cancer_output, dim=1).squeeze().tolist()
# Class names for lung cancer
lung_cancer_classes = [
"adenocarcinoma_left.lower.lobe",
"large.cell.carcinoma_left.hilum",
"NORMAL",
"squamous.cell.carcinoma_left.hilum"
]
# Preparing the result as a dictionary
result = {
"Pneumonia Probability": f"{pneumonia_prob:.4f}",
"TB Probability": f"{tb_prob:.4f}",
"Lung Cancer Probabilities": {class_name: f"{prob:.4f}" for class_name, prob in zip(lung_cancer_classes, lung_cancer_probs)}
}
return result
# Gradio Interface
iface = gr.Interface(fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
title="Probabilistic Lung Disease Detection",
description="An AI-powered tool that analyzes and predicts probabilities for lung diseases, including Pneumonia, Tuberculosis, and Lung Cancer.")
iface.launch()