gpt-tools / train.py
AliMc2021's picture
add application files
d9b8e9c
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AdamW
from model import load_model_lazy, unload_model
from database import fetch_all_inputs, clear_database # مدیریت دیتابیس
from datasets import load_dataset
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=512):
self.texts = texts
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
encodings = self.tokenizer(
text,
truncation=True,
padding="max_length", # پُر کردن توکن‌ها تا طول مشخص
max_length=self.max_length,
return_tensors="pt"
)
attention_mask = encodings.attention_mask.squeeze(0)
return encodings.input_ids.squeeze(0), attention_mask
def train_model_with_text(selected_model, custom_text, epochs, batch_size):
"""
آموزش مدل با متن سفارشی.
"""
model, tokenizer = load_model_lazy(selected_model)
dataset = TextDataset([custom_text], tokenizer)
dataloader = DataLoader(dataset, batch_size=min(batch_size, len(dataset)), shuffle=True)
_train_model(model, tokenizer, dataloader, epochs, selected_model, "custom_text")
unload_model(selected_model)
def train_model_with_database(selected_model, epochs, batch_size):
"""
آموزش مدل با داده‌های موجود در دیتابیس.
"""
model, tokenizer = load_model_lazy(selected_model)
inputs_data = fetch_all_inputs()
texts = [input_text for input_text, model_name in inputs_data if model_name == selected_model]
if not texts:
print("Error: No data found in the database for the selected model.")
return
dataset = TextDataset(texts, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
_train_model(model, tokenizer, dataloader, epochs, selected_model, "database")
clear_database()
unload_model(selected_model)
def train_model_with_dataset(selected_model, epochs, batch_size, dataset_path):
"""
آموزش مدل با فایل دیتاست آپلود‌شده.
"""
model, tokenizer = load_model_lazy(selected_model)
# خواندن دیتاست
with open(dataset_path, "r", encoding="utf-8") as f:
texts = f.readlines()
if not texts:
print("Error: Dataset is empty.")
return
dataset = TextDataset(texts, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
_train_model(model, tokenizer, dataloader, epochs, selected_model, "dataset")
unload_model(selected_model)
def _train_model(model, tokenizer, dataloader, epochs, model_name, method):
"""
منطق مشترک آموزش مدل.
"""
optimizer = AdamW(model.parameters(), lr=5e-5)
# انتقال مدل به GPU در صورت وجود
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.train()
for epoch in range(epochs):
total_loss = 0
for step, (input_ids, attention_mask) in enumerate(dataloader):
optimizer.zero_grad()
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# محاسبه خروجی و خطا
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader)}")
# ذخیره مدل
save_path = f"trained_{model_name}_{method}"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model {model_name} trained with {method} and saved to {save_path}.")
def train_model_with_hf_dataset(selected_model, epochs, batch_size, dataset_name, split="train"):
"""
آموزش مدل با استفاده از دیتاست‌های Hugging Face.
Args:
selected_model (str): نام مدل برای آموزش.
epochs (int): تعداد epochs.
batch_size (int): اندازه batch.
dataset_name (str): نام دیتاست در Hugging Face.
split (str): بخش دیتاست برای بارگذاری (train, test, validation).
"""
model, tokenizer = load_model_lazy(selected_model)
# بارگذاری داده‌ها از Hugging Face
texts = load_dataset(dataset_name, split)
if not texts:
print(f"Error: Dataset {dataset_name} ({split} split) is empty or invalid.")
return
dataset = TextDataset(texts, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
_train_model(model, tokenizer, dataloader, epochs, selected_model, f"huggingface_{dataset_name}")
unload_model(selected_model)